Виды коррозии паровых котельных агрегатов. Зарубежная технология. Предотвращение коррозии и накипи в закрытых системах теплоснабжения, водогрейных и паровых котлах Хлорная коррозия труб в котлах


Коррозионные явления в котлах чаще всего проявляются на внутренней теплонапряженной поверхности и сравнительно реже - на наружной.

В последнем случае разрушение металла обусловлено - в большинстве случаев - совместным действием коррозии и эрозии, которая иногда имеет преобладающее значение.
Внешний признак эрозионного разрушения - чистая поверхность металла. При коррозионном же воздействии продукты коррозии обычно сохраняются на его поверхности.
Внутренние (в водной среде) коррозионные и накипные процессы могут усугублять наружную коррозию (в газовой среде) из-за теплового сопротивления слоя накипных и коррозионных отложений, и, следовательно, роста температуры на поверхности металла.
Наружная коррозия металла (со стороны топки котла) зависит от разных факторов, но, прежде всего, - от вида и состава сжигаемого топлива.

Коррозия газо-мазутных котлов
В мазуте содержатся органические соединения ванадия и натрия. Если на стенке трубы, обращенной в топку, накапливаются расплавленные отложения шлака, содержащего соединения ванадия (V), то при большом избытке воздуха и/или температуре поверхности металла 520-880 оС происходят реакции:
4Fe + 3V2O5 = 2Fe2O3 + 3V2O3 (1)
V2O3 + O2 = V2O5 (2)
Fe2O3 + V2O5 = 2FeVO4 (3)
7Fe + 8FeVO4 = 5Fe3О4 + 4V2O3 (4)
(Соединения натрия) + О2 = Na2O (5)
Возможен и другой механизм коррозии с участием ванадия (жидкая эвтектическая смесь):
2Na2O . V2O4 . 5V2O5 + O2 = 2Na2O . 6V2O5 (6)
Na2O . 6V2O5 + М = Na2O . V2O4 . 5V2O5 + MO (7)
(М - металл)
Соединения ванадия и натрия при сгорании топлива окисляются до V2O5 и Na2O. В отложениях, прилипающих к поверхности металла, Na2O - связующее. Жидкость, образующаяся в результате реакций (1)-(7), расплавляет защитную пленку магнетита (Fe3O4), что приводит к окислению металла под отложениями (температура расплавления отложений (шлака) - 590-880 оС).
В результате указанных процессов стенки экранных труб, обращенных к топке, равномерно утончаются.
Росту температуры металла, при которой соединения ванадия становятся жидкими, способствуют внутренние накипные отложения в трубах. И, таким образом, при достижении температуры предела текучести металла возникает разрыв трубы - следствие совместного действия внешних и внутренних отложений.
Корродируют и детали крепления трубных экранов, а также выступы сварных швов труб - рост температуры на их поверхности ускоряется: они не охлаждаются пароводяной смесью, как трубы.
Мазут может содержать серу (2,0-3,5 %) в виде органических соединений, элементарной серы, сульфата натрия (Na2SO4), попадающего в нефть из пластовых вод. На поверхности металла в таких условиях ванадиевая коррозия сопровождается сульфидно-оксидной. Их совместное действие в наибольшей степени проявляется, когда в отложениях присутствуют 87 % V2O5 и 13 % Na2SO4, что соответствует содержанию в мазуте ванадия и натрия в соотношении 13/1.
Зимой при разогреве мазута паром в емкостях (для облегчения слива) в него дополнительно попадает вода в количестве 0,5-5,0 %. Следствие: увеличивается количество отложений на низкотемпературных поверхностях котла, и, очевидно, растет коррозия мазутопроводов и мазутных емкостей.

Кроме описанной выше схемы разрушения экранных труб котлов, коррозия пароперегревателей, труб фестонов, кипятильных пучков, экономайзеров имеет некоторые особенности из-за повышенных - в некоторых сечениях - скоростей газов, особенно содержащих несгоревшие частицы мазута и отслоившиеся частицы шлака.

Идентификация коррозии
Наружная поверхность труб покрыта плотным эмалевидным слоем отложений серого и темно-серого цвета. На стороне, обращенной в топку, - утончение трубы: плоские участки и неглубокие трещинки в виде «рисок» хорошо видны, если очистить поверхность от отложений и оксидных пленок.
Если труба аварийно разрушена, то видна сквозная продольная неширокая трещина.

Коррозия пылеугольных котлов
В коррозии, образуемой действием продуктов сжигания углей, определяющее значение имеют сера и ее соединения. Кроме того, на течение коррозионных процессов влияют хлориды (в основном NaCl) и соединения щелочных металлов. Наиболее вероятна коррозия при содержании в угле более 3,5 % серы и 0,25 % хлора.
Летучая зола, содержащая щелочные соединения и оксиды серы, отлагается на поверхности металла при температуре 560-730 оС. При этом в результате происходящих реакций образуются щелочные сульфаты, например K3Fe(SO4)3 и Na3Fe(SO4)3. Этот расплавленный шлак, в свою очередь, разрушает (расплавляет) защитный оксидный слой на металле - магнетит (Fe3O4).
Скорость коррозии максимальна при температуре металла 680-730 оС, при ее увеличении скорость уменьшается из-за термического разложения коррозионных веществ.
Наибольшая коррозия - в выходных трубах пароперегревателя, где наиболее высокая температура пара.

Идентификация коррозии
На экранных трубах можно наблюдать плоские участки с обеих сторон трубы, подвергающихся коррозионному разрушению. Эти участки расположены под углом друг к другу 30-45 оС и покрыты слоем отложений. Между ними - сравнительно «чистый» участок, подвергающийся «лобовому» воздействию газового потока.
Отложения состоят из трех слоев: внешний - пористая летучая зола, промежуточный слой - белесые водорастворимые щелочные сульфаты, внутренний слой - блестящие черные оксиды железа (Fe3O4) и сульфиды (FeS).
На низкотемпературных частях котлов - экономайзер, воздухоподогреватель, вытяжной вентилятор - температура металла падает ниже «точки росы» серной кислоты.
При сжигании твердого топлива температура газов уменьшается от 1650 оС в факеле до 120 оС и менее в дымовой трубе.
Из-за охлаждения газов образуется серная кислота в паровой фазе, и при контакте с более холодной поверхностью металла пары конденсируются с образованием жидкой серной кислоты. «Точка росы» серной кислоты - 115-170 оС (может быть и больше - зависит от содержания в газовом потоке паров воды и оксида серы (SO3)).
Процесс описывается реакциями:
S + O2 = SO2 (8)
SO3 + H2O = H2SO4 (9)
H2SO4 + Fe = FeSO4 + H2 (10)
В присутствии оксидов железа и ванадия возможно каталитическое окисление SO3:
2SO2 + O2 = 2SO3 (11)
В некоторых случаях сернокислотная коррозия при сжигании каменного угля менее значима, чем при сжигании бурого, сланца, торфа и даже природного газа - из-за относительно большего выделения водяного пара из них.

Идентификация коррозии
Этот вид коррозии вызывает равномерное разрушение металла. Обычно поверхность шероховатая, с небольшим налетом ржавчины, и похожа на поверхность без коррозионных явлений. При длительном воздействии металл может быть покрыт отложениями продуктов коррозии, которые нужно осторожно снять при обследовании.

Коррозия во время перерывов в эксплуатации
Этот вид коррозии проявляется на экономайзере и в тех местах котла, где наружные поверхности покрыты соединениями серы. При остывании котла температура металла падает ниже «точки росы» и, как описано выше, если есть сернистые отложения, образуется серная кислота. Возможно промежуточное соединение - сернистая кислота (H2SO3), но она очень нестойкая и сразу превращается в серную кислоту.

Идентификация коррозии
Поверхности металла обычно покрыты нанесениями. Если их удалить, то обнаружатся участки разрушения металла, где были сернистые отложения и участки некорродированного металла. Такой внешний вид отличает коррозию на остановленном котле от вышеописанной коррозии металла экономайзера и других «холодных» частей работающего котла.
При обмывке котла коррозионные явления распределены более или менее равномерно по металлической поверхности из-за размывания сернистых отложений и недостаточной осушке поверхностей. При недостаточной обмывке коррозия локализована там, где были сернистые соединения.

Эрозия металла
Эрозийному разрушению металла при определенных условиях подвергаются разные системы котла как с внутренней, так и с наружной стороны обогреваемого металла, и там, где возникают турбулентные потоки с большой скоростью.
Ниже рассматривается только эрозия турбин.
Турбины подвергаются эрозии от ударов твердых частиц и капелек конденсата пара. Твердые частицы (оксиды) отслаиваются от внутренней поверхности пароперегревателей и паропроводов, особенно в условиях переходных тепловых процессов.

Капельки конденсата пара в основном разрушают поверхности лопаток последней ступени турбины и дренажные трубопроводы. Возможно эрозионно-коррозионное воздействие конденсата пара, если конденсат «кислый» - рН ниже пяти единиц. Коррозия также имеет опасный характер при наличии в водяных капельках пара хлоридов (до 12 % от массы отложений) и едкого натра.

Идентификация эрозии
Разрушение металла от ударов капель конденсата наиболее заметно на передних кромках лопаток турбин. Кромки покрыты тонкими поперечными зубцами и канавками (бороздками), могут быть наклонные конические выступы, направленные в сторону ударов. Выступы есть на передних кромках лопаток и почти отсутствуют на их задних плоскостях.
Повреждения от твердых частиц имеют вид разрывов, микровмятин и зазубрин на передних кромках лопаток. Бороздки и наклонные конусы отсутствуют.

Низкотемпературной коррозии подвергаются поверхности нагрева трубчатых и регенеративных воздухоподогревателей, низкотемпературных экономайзеров, а также металлические газоходы и дымовые трубы при температурах металла ниже точки росы дымовых газов. Источником низкотемпературной коррозии является серный ангидрид SO 3 , образующий в дымовых газах пары серной кислоты, которая конденсируется при температурах точки росы дымовых газов. Нескольких тысячных долей процента SO 3 в газах достаточно для того, чтобы вызвать коррозию металла со скоростью, превышающей 1 мм/год. Низкотемпературная коррозия замедляется при организации топочного процесса с малыми избытками воздуха, а также при применении присадок к топливу и повышении коррозионной стойкости металла.

Высокотемпературной коррозии подвергаются топочные экраны барабанных и прямоточных котлов при сжигании твердого топлива, пароперегреватели и их крепления, а также экраны нижней радиационной части котлов сверхкритического давления при сжигании сернистого мазута.

Коррозия внутренней поверхности труб является следствием взаимодействия с металлом труб газов кислорода и углекислоты) или солей (хлоридов и сульфатов), содержащихся в котловой воде. В современных котлах сверхкритического давления пара содержание газов и коррозионноактивных солей в результате глубокого обессоливания питательной воды и термической деаэрации незначительно и основной причиной коррозии является взаимодействие металла с водой и паром. Коррозия внутренней поверхности труб проявляется в образовании оспин, язвин, раковин и трещин; наружная поверхность поврежденных труб может ничем не отличаться от здоровых.

К повреждениям в результате внутренней коррозии труб также относятся:
кислородная стояночная коррозия, поражающая любые участки внутренней поверхности труб. Наиболее интенсивно поражаются участки, покрытые водорастворимыми отложениями (трубы пароперегревателей и переходной зоны прямоточных котлов);
подшламовая щелочная коррозия кипятильных и экранных труб, возникающая под действием концентрированной щелочи вследствие упаривания воды под слоем шлама;
коррозионная усталость, проявляющаяся в виде трещин в кипятильных и экранных трубах в результате одновременного воздействия коррозионной среды и переменных термических напряжений.

Окалина образуется на трубах вследствие перегрева их до температур, значительно превышающих расчетные. В связи с ростом производительности котлоагрегатов в последнее время участились случаи выхода из строя труб пароперегревателей из-за недостаточной окалиностойкости к топочным газам. Интенсивное окалинообразование наиболее часто наблюдается при сжигании мазута.

Износ стенок труб происходит в результате истирающего действия угольной и сланцевой пыли и золы, а также струй пара, выходящих из поврежденных соседних труб или сопел обдувочных аппаратов. Иногда причиной износа и наклепа стенок труб служит дробь, применяемая для очистки поверхностей нагрева. Места и степень износа труб определяют наружным осмотром и измерением их диаметра. Фактическую толщину стенки трубы измеряют ультразвуковым толщиномером.

Коробление экранных и кипятильных труб, а также отдельных труб и участков настенных панелей радиационной части прямоточных котлов возникает при установке труб с неравномерным натягом, обрыве креплений труб, упуске воды и из-за отсутствия свободы для их тепловых перемещений. Коробление змеевиков и ширм пароперегревателя происходит главным образом вследствие обгорания подвесок и креплений, чрезмерного и неравномерного натяга, допущенного при установке или замене отдельных элементов. Коробление змеевиков водяного экономайзера происходит вследствие перегорания и смещения опор и подвесок.

Свищи, отдулины, трещины и разрывы могут появиться также в результате: отложения в трубах накипи, продуктов коррозии, технологической окалины, сварочного грата и других посторонних предметов, замедляющих циркуляцию воды и способствующих перегреву металла труб; наклепа дробью; несоответствия марки стали параметрам пара и температуре газов; внешних механических повреждений; нарушения режимов эксплуатации.

  • Галустов В.С. Прямоточные распылительные аппараты в теплоэнергетике (Документ)
  • Филонов А.Г. Водно-химические режимы теплоэнергетических установок (Документ)
  • Физико-химические процессы в техносфере. Сборник задач (Документ)
  • Орлов Д.С. Химия почв (Документ)
  • n1.doc

    3.4. Коррозия элементов парогенераторов
    3.4.1. Коррозия парообразующих труб и барабанов парогенераторов
    во время их эксплуатации

    Коррозионные повреждения металлов парогенераторов обусловлены действием одного или нескольких факторов: чрезмерного теплонапряжения поверхности нагрева, вялой циркуляции воды, застоя пара, напряженного металла, отложения примесей и других факторов, препятствующих нормальному омыванию и охлаждению поверхности нагрева.

    При отсутствии этих факторов нормальная магнетитная пленка легко образуется и сохраняется в воде с нейтральной или умеренно щелочной реакцией среды, не содержащей растворенного кислорода. В присутствии же О 2 кислородной коррозии могут подвергаться входные участки водяных экономайзеров, барабаны и опускные трубы циркуляционных контуров. Особенно отрицательно сказываются малые скорости движения воды (в водяных экономайзерах, так как при этом пузырьки выделяющегося воздуха задерживаются в местах шероховатостей внутренней поверхности труб и вызывают интенсивную местную кислородную коррозию. Коррозия углеродистой стали в водной среде при высоких температурах включает две стадии: начальную электрохимическую и конечную химическую. Согласно этому механизму коррозии, ионы двухвалентного железа диффундируют через окисную пленку к поверхности контакта ее с водой, реагируют с гидроксилом или с водой с образованием гидрата закиси железа, который затем распадается на магнетит и водород по реакции:


    .

    (2.4)

    Электроны, проходящие наряду с ионами железа через окисную пленку, ассимилируются ионами водорода с выделением Н 2 . С течением времени толщина окисной пленки увеличивается, а диффузия через нее затрудняется. Вследствие этого наблюдается уменьшение скорости коррозии со временем.

    Нитритная коррозия. При наличии в питательной воде нитрита натрия наблюдается коррозия металла парогенератора, имеющая по внешнему виду большое сходство с кислородной коррозией. Однако в отличие от нее нитритная коррозия поражает не входные участки опускных труб, а внутреннюю поверхность теплонапряженных подъемных труб и вызывает образование более глубоких язвин диаметром до 15–20 мм. Нитриты ускоряют протекание катодного процесса, а тем самым и коррозию металла парогенератора. Течение процесса при нитритной коррозии может быть описано следующей реакцией:


    .

    (2.5)

    Гальванокоррозия металла парогенератора. Источником гальванокоррозии парообразующих труб может явиться медь, попадающая в парогенераторы в тех случаях, когда питательная вода, содержащая повышенное количество аммиака, кислорода и свободной углекислоты, агрессивно воздействует на латунные и медные трубы регенеративных подогревателей. Необходимо отметить, что гальванокоррозию может вызвать лишь металлическая медь, отложившаяся на стенках парогенератора. При поддержании значения рН питательной воды выше 7,6 медь поступает в парогенераторы в форме окислов или комплексных соединений, которые не обладают коррозионно-агрессивными свойствами и отлагаются на поверхностях нагрева в виде шлама. Ионы меди, присутствующие в питательной воде с низким значением рН, попадая далее в парогенератор, в условиях щелочной среды также осаждаются в виде шламообразных окислов меди. Однако под действием выделяющегося в парогенераторах водорода или избытка сульфита натрия окислы меди могут полностью восстанавливаться до металлической меди, которая, отложившись на поверхностях нагрева, приводит к электрохимической коррозии металла котла.

    Подшламовая (ракушечная) коррозия . Подшламовая коррозия возникает в застойных зонах циркуляционного контура парогенератора под слоем шлама, состоящего из продуктов коррозии металлов и фосфатной обработки котловой воды. Если эти отложения сосредоточены на обогреваемых участках, то под ними возникает интенсивное упаривание, повышающее солесодержание и щелочность котловой воды до опасных значений.

    Подшламовая коррозия распространяется в виде больших язвин диаметром до 50–60 мм на внутренней стороне парообразующих труб, обращенной к факелу топки. В пределах язвин наблюдается сравнительно равномерное уменьшение толщины стенки трубы, часто приводящее к образованию свищей. На язвинах обнаруживается плотный слой окислов железа в виде ракушек. Описанное разрушение металла получило в литературе название «ракушечной» коррозии. Подшламовая коррозия, вызываемая окислами трехвалентного железа и двухвалентной меди, является примером комбинированного разрушения металла; первая стадия этого процесса является чисто электрохимической, а вторая – химической, обусловленной действием воды и водяного пара на перегретые участки металла, находящиеся под слоем шлама. Наиболее эффективным средством борьбы с «ракушечной» коррозией парогенераторов является предотвращение возникновения коррозии тракта питательной воды и выноса из него окислов железа и меди с питательной водой.

    Щелочная коррозия. Расслоение пароводяной смеси, которое имеет место в горизонтальных или слабонаклонных парообразующих трубах, как известно, сопровождается образованием паровых мешков, перегревом металла и глубоким упариванием пленки котловой воды. Образовавшаяся при упаривании котловой воды высококонцентрированная пленка содержит в растворе значительное количество щелочи. Едкий натр, присутствующий в котловой воде в малых концентрациях, защищает металл от коррозии, но он становится весьма опасным коррозионным фактором, если на каких-либо участках поверхности парогенератора создаются условия для глубокого упаривания котловой воды с образованием повышенной концентрации NaOH.

    Концентрация едкого натра в упариваемой пленке котловой воды зависит:

    А) от степени перегрева стенки парообразующей трубы по сравнению с температурой кипения при данном давлении в парогенераторе, т.е. величины?t s ;

    Б) величин соотношений концентрации едкого натра и содержащихся в циркулирующейся воде натриевых солей, обладающих способностью сильно повышать температуру кипения воды при данном давлении.

    Если концентрация хлоридов в котловой воде значительно превышает в эквивалентном отношении концентрацию NaOH, то раньше чем последняя достигает в упаривающейся пленке опасных значений, содержание хлоридов в ней настолько возрастает, что температура кипения раствора превышает температуру перегретой стенки трубы, и дальнейшее выпаривание воды прекращается. Если же котловая вода содержит преимущественно едкий натр, то при величине?t s = 7 °С концентрация NaOH в пленке концентрированной воды составляет 10 %, а при
    ?t s = 30 °C достигает 35 %. Между тем экспериментальным путем установлено, что уже 5–10-процентные растворы едкого натра при температуре котловой воды выше 200 °С способны интенсивно корродировать металл обогреваемых участков и сварных швов с образованием рыхлой магнитной закись-окиси железа и одновременным выделением водорода. Щелочная коррозия имеет избирательный характер, продвигаясь вглубь металла преимущественно по зернам перлита и образуя сетку межкристаллитных трещин. Концентрированный раствор едкого натра способен при высоких температурах также растворять защитный слой окислов железа с образованием феррита натрия NaFeO 2 , который гидролизуется с образованием щелочи:




    (2.6)



    (2.7)

    Вследствие того, что щелочь в этом круговом процессе не расходуется, создается возможность непрерывного протекания коррозионного процесса. Чем выше температура котловой воды и концентрация едкого натра, тем интенсивнее протекает процесс щелочной коррозии. Установлено, что концентрированные растворы едкого натра не только разрушают защитную магнетитную пленку, но и тормозят ее восстановление после повреждения.

    Источником щелочной коррозии парогенераторов могут также явиться шламоотложения, способствующие глубокому упариванию котловой воды с образованием высококонцентрированного коррозионно-агрессивного раствора щелочи. Уменьшение относительной доли щелочи в общем солесодержании котловой воды и создание преобладающего содержания в последней таких солей, как хлориды, способны резко ослабить щелочную коррозию котельного металла. Устранение щелочной коррозии достигается также обеспечением чистоты поверхности нагрева и интенсивной циркуляцией на всех участках парогенератора, которая предотвращает глубокое упаривание воды.

    Межкристаллитная коррозия. Межкристаллитная коррозия появляется в результате взаимодействия котельного металла со щелочной котловой водой. Характерная особенность межкристаллитных трещин в том, что они возникают в местах наибольших напряжений в металле. Механические напряжения слагаются из внутренних напряжений, возникающих в процессе изготовления и монтажа парогенераторов барабанного типа, а также дополнительных напряжений, возникающих в процессе эксплуатации. Образованию межкристаллитных кольцевых трещин на трубах способствуют дополнительные статические механические напряжения. Они возникают в трубных контурах и в барабанах парогенератора при недостаточной компенсации температурных удлинений, а также вследствие неравномерного обогрева или охлаждения отдельных участков тела барабана или коллектора.

    Межкристаллитная коррозия протекает с некоторым ускорением: в начальный период разрушение металла происходит очень медленно и без деформации, а затем с течением времени скорость его резко возрастает и может принять катастрофические размеры. Межкристаллитную коррозию котельного металла нужно рассматривать прежде всего как частный случай электрохимической коррозии, протекающей по границам зерен напряженного металла, находящегося в контакте со щелочным концентратом котловой воды. Появление коррозионных микрогальванических элементов вызывается различием потенциалов между телами кристаллитов, выполняющих роль катодов. Роль анодов выполняют разрушающиеся грани зерен, потенциал которых вследствие механических напряжений металла в этом месте сильно понижен.

    Наряду с электрохимическими процессами существенную роль в развитии межкристаллитной коррозии играет атомарный водород, продукт разряда
    Н + -ионов на катоде коррозионных элементов; легко диффундируя в толщу стали, он разрушает карбиды и создает большие внутренние напряжения в металле котла вследствие появления в нем метана, что приводит к образованию тонких межкристаллитных трещин (водородное растрескивание). Кроме того, во время реакции водорода с включениями стали образуются различные газообразные продукты, что в свою очередь вызывает дополнительные разрывные усилия и способствует разрыхлению структуры, углублению, расширению и разветвлению трещин.

    Основным путем предотвращения водородной коррозии металла котла является устранение любых коррозионных процессов, приводящих к образованию атомарного водорода. Это достигается ослаблением наноса в парогенераторе окислов железа и меди, химической очисткой котлов, улучшением циркуляции воды и снижением местных повышенных тепловых нагрузок поверхности нагрева.

    Установлено, что межкристаллитная коррозия котельного металла в соединениях элементов парогенераторов возникает лишь при одновременном наличии местных растягивающих напряжений, близких или превышающих предел текучести, и при концентрации NаОН в котловой воде, накапливающейся в неплотностях соединений элементов котла, превышающей 5–6 %. Для развития межкристаллитных разрушений котельного металла существенное значение имеет не абсолютная величина щелочности, а доля едкого натра в общем солевом составе котловой воды. Установлено опытным путем, что если эта доля, т. е. относительная концентрация едкого натра в котловой воде составляет менее 10–15 % от суммы минеральных растворимых веществ, то такая вода, как правило, не является агрессивной.

    Пароводяная коррозия. В местах с дефективной циркуляцией, где пар застаивается и не сразу отводится в барабан, стенки труб под паровыми мешками подвергаются сильному местному перегреву. Это приводит к химической коррозии перегретого до 450 °С и выше металла парообразующих труб под действием высокоперегретого пара. Процесс коррозии углеродистой стали в высокоперегретом водяном паре (при температуре 450 – 470 °С) сводится к образованию Fe 3 O 4 и газообразного водорода:




    (2.8.)

    Отсюда следует, что критерием интенсивности пароводяной коррозии металла котла является увеличение содержания свободного водорода в насыщенном паре. Пароводяная коррозия парообразующих труб наблюдается, как правило, в зонах резкого колебания температуры стенки, где имеют место теплосмены, вызывающие разрушение защитной окисной пленки. При этом создается возможность непосредственного контакта перегретого металла трубы с водой или водяным паром и химического взаимодействия между ними.

    Коррозионная усталость. В барабанах парогенераторов и котельных трубах в том случае, если на металл воздействуют одновременно с коррозионной средой термические напряжения, переменные по знаку и величине, появляются глубоко проникающие в сталь трещины коррозионной усталости, которые могут иметь транскристаллитный, межкристаллитный либо смешанный характер. Как правило, растрескиванию котельного металла предшествует разрушение защитной окисной пленки, что ведет к значительной электрохимической неоднородности и, как следствие, к развитию местной коррозии.

    В барабанах парогенераторов трещины коррозионной усталости возникают при попеременном нагреве и охлаждении металла на небольших участках в местах соединения трубопроводов (питательной воды, периодической продувки, ввода раствора фосфата) и водоуказательных колонок с телом барабана. Во всех этих соединениях металл барабана охлаждается, если температура протекающей по трубе питательной воды меньше температуры насыщения при давлении в парогенераторе. Местное охлаждение стенок барабана с последующим обогревом их горячей котловой водой (в моменты прекращения питания) всегда сопряжено с появлением в металле высоких внутренних напряжений.

    Коррозионное растрескивание стали резко усиливается в условиях попеременного смачивания и высыхания поверхности, а также в тех случаях, когда движение по трубе пароводяной смеси имеет пульсирующий характер, т. е. часто и резко изменяются скорость движения пароводяной смеси и ее паросодержание, а также при своеобразном расслоении пароводяной смеси на отдельные «пробки» пара и воды, следующие друг за другом.

    3.4.2. Коррозия пароперегревателей
    Скорость пароводяной коррозии определяется преимущественно температурой пара и составом контактирующего с ним металла. Существенное значение в ее развитии имеют также величины теплообмена и температурных колебаний при работе пароперегревателя, вследствие которых может наблюдаться разрушение защитных окисных пленок. В среде перегретого пара с температурой больше
    575 °С на поверхности стали в результате пароводяной коррозии образуется FeO (вюстит):

    Установлено, что трубы, изготовленные из обычной малоуглеродистой стали, находясь в течение длительного времени под воздействием высокоперегретого пара, равномерно разрушаются с одновременным перерождением структуры металла и образованием плотного слоя окалины. В парогенераторах сверхвысокого и сверхкритического давлений при температуре перегрева пара 550 °С и выше наиболее теплонапряженные элементы пароперегревателя (выходные участки) обычно изготовляют из теплостойких аустенитных нержавеющих сталей (хромоникелевых, хромомолибденовых и др.). Эти стали в условиях совместного действия растягивающих напряжений и коррозионно-агрессивной среды подвержены растрескиванию. Большинство эксплуатационных повреждений пароперегревателей, характеризующихся коррозионным растрескиванием элементов из аустенит-ных сталей, обусловлено присутствием в паре хлоридов и едкого натра. Борьба с коррозионным растрескиванием деталей из аустенитных сталей осуществляется главным образом посредством поддержания безопасного водного режима парогенераторов.
    3.4.3. Стояночная коррозия парогенераторов
    При простоях парогенераторов или другого паросилового оборудования в холодном или горячем резерве либо на ремонте на поверхности металла под действием кислорода воздуха или влаги развивается так называемая стояночная коррозия. По этой причине простои оборудования без применения должных защитных мер от коррозии часто приводят к серьезным повреждениям, особенно в парогенераторах. Сильно страдают от стояночной коррозии пароперегреватели и парообразующие трубы переходных зон прямоточных парогенераторов. Одной из причин стояночной коррозии внутренней поверхности парогенераторов является наполнение их во время простоев водой, насыщенной кислородом. В этом случае особенно подвержен коррозии металл на границе вода – воздух. Если же парогенератор, оставленный на ремонт, полностью дренируется, то на внутренней поверхности его всегда остается пленка влаги при одновременном доступе кислорода, который, легко диффундируя через эту пленку, вызывает активную электрохимическую коррозию металла. Тонкая пленка влаги сохраняется довольно долго, так как атмосфера внутри парогенератора насыщена парами воды, особенно в том случае, если в него попадает пар через неплотности арматуры параллельно работающих парогенераторов. Если в воде, заполняющей резервный парогенератор, присутствуют хлориды, то это приводит к увеличению скорости равномерной коррозии металла, а если в ней содержится незначительное количество щелочи (меньше 100 мг/дм 3 NaOH) и кислород, то это способствует развитию язвенной коррозии.

    Развитию стояночной коррозии способствует также накапливающийся в парогенераторе шлам, который обычно удерживает влагу. По этой причине значительные коррозионные раковины – часто обнаруживаются в барабанах вдоль нижней образующей по их концам, т. е. на участках наибольшего скопления шлама. Особенно сильно подвержены коррозии участки внутренней поверхности парогенераторов, которые покрыты водорастворимыми солевыми отложениями, например змеевики пароперегревателей и переходная зона в прямоточных парогенераторах. Во время простоев парогенераторов эти отложения поглощают атмосферную влагу и расплываются с образованием на поверхности металла высококонцентрированного раствора натриевых солей, имеющего большую электропроводность. При свободном доступе воздуха процесс коррозии под солевыми отложениями протекает весьма интенсивно. Весьма существенным является то, что стояночная коррозия усиливает процесс разъедания металла котла во время работы парогенератора. Это обстоятельство следует считать главной опасностью стояночной коррозии. Образующаяся ржавчина, состоящая из окислов железа высокой валентности Fe(OH) 3 , во время работы парогенератора играет роль деполяризатора коррозионных микро- и макрогальванопар, что ведет к интенсификации коррозии металла в процессе эксплуатации агрегата. В конечном счете накопление ржавчины на поверхности металла котла приводит к подшламовой коррозии. Помимо этого, при последующем простое агрегата восстановленная ржавчина опять приобретает способность вызывать коррозию вследствие поглощения ею кислорода воздуха. Эти процессы циклически повторяются при чередовании простоев и работы парогенераторов.

    Средствами защиты парогенераторов от стояночной коррозии в периоды их простоя в резерве и на ремонте служат различные методы консервации.
    3.5. Коррозия паровых турбин
    Металл проточной части турбин может в процессе работы подвергаться коррозии в зоне конденсации пара, особенно при наличии в нем угольной кислоты, растрескиванию вследствие наличия в паре коррозионных агентов и стояночной коррозии при нахождении турбин в резерве или на ремонте. Особенно сильно подвергается стояночной коррозии проточная часть турбины при наличии в ней солевых отложений. Образующийся во время простоя турбины солевой раствор ускоряет развитие коррозии. Отсюда вытекает необходимость тщательной очистки от отложений лопаточного аппарата турбины перед длительным простоем ее.

    Коррозия в период простоя обычно имеет сравнительно равномерный характер, при неблагоприятных условиях она проявляется в виде многочисленных язвин, равномерно распределенных по поверхности металла. Местом протекания ее являются те ступени, где конденсируется влага, агрессивно воздействующая на стальные детали проточной части турбины.

    Источником появления влаги является прежде всего конденсация пара, заполняющего турбину после ее остановки. Конденсат частично остается на лопатках и диафрагмах, частично стекает и скапливается в корпусе турбины, так как он не отводится через дренажи. Количество влаги внутри турбины может увеличиваться вследствие просачивания пара из паропроводов отборов и противодавления. Внутренние части турбины всегда холоднее поступающего в турбину воздуха. Относительная влажность воздуха машинного зала весьма высока, поэтому достаточно незначительного охлаждения воздуха, чтобы наступила точка росы, и произошло выделение влаги на металлических деталях.

    Для устранения стояночной коррозии паровых турбин необходимо исключить возможность попадания пара в турбины во время нахождения их в резерве как со стороны паропровода перегретого пара, так и со стороны магистрали отборов, дренажных линий и т. д. Для поддержания поверхности лопаток, дисков и ротора в сухом виде применяется периодическое продувание внутренней полости резервной турбины потоком горячего воздуха (t = 80 ч 100 °C), подаваемого небольшим вспомогательным вентилятором через нагреватель (электрический или паровой).
    3.6. Коррозия конденсаторов турбин
    В условиях эксплуатации паросиловых установок нередко наблюдаются случаи коррозионных повреждений латунных конденсаторных труб как с внутренней стороны, омываемой охлаждающей водой, так и с наружной стороны. Интенсивно корродируют внутренние поверхности конденсаторных труб, охлаждаемые сильно минерализованными, солено-озерными водами, содержащими большое количество хлоридов, либо оборотными циркуляционными водами с повышенной минерализацией, и загрязненными взвешенными частицами.

    Характерной особенностью латуни как конструкционного материала является склонность ее к коррозии при совместном действии повышенных механических напряжений и среды, обладающей даже умеренными агрессивными свойствами. Коррозионные повреждения проявляются в конденсаторах с латунными трубами в форме общего обесцинкования, пробочного обесцинкования, коррозионного растрескивания, ударной коррозии и коррозионной усталости. На протекание отмеченных форм коррозии латуни решающее воздействие оказывает состав сплава, технология изготовления конденсаторных труб и характер контактируемой среды. Вследствие обесцинкования разрушение поверхности латунных труб может носить сплошной слоевой характер или принадлежать к так называемому пробочному типу, являющемуся наиболее опасным. Пробочное обесцинкование характеризуется углубляющимися в металл язвинами, заполненными рыхлой медью. Наличие сквозных свищей вызывает необходимость замены трубы во избежание присоса охлаждающей сырой воды в конденсат.

    Проведенные исследования, а также длительные наблюдения за состоянием поверхности конденсаторных труб в действующих конденсаторах показали, что дополнительное введение в латунь небольших количеств мышьяка заметно снижает склонность латуней к обесцинкованию. Сложные по составу латуни, дополнительно легированные оловом или алюминием, также обладают повышенной коррозионной стойкостью благодаря способности этих сплавов быстро восстанавливать защитные пленки при их механическом разрушении. Вследствие применения металлов, занимающих различные места в потенциальном ряду и электрически соединенных, в конденсаторе возникают макроэлементы. Наличие переменного температурного поля создает возможность развития коррозионно-опасных ЭДС термоэлектрического происхождения. Блуждающие токи, возникающие при заземлении вблизи постоянного тока, также могут явиться причиной интенсивной коррозии конденсаторов.

    Коррозионные повреждения конденсаторных труб со стороны конденсирующегося пара чаще всего бывают связаны с присутствием в нем аммиака. Последний, будучи хорошим комплексообразователем по отношению к ионам меди и цинка, создает благоприятные условия для обесцинкования латуни. Кроме того, аммиак обусловливает коррозионное растрескивание латунных конденсаторных труб при наличии в сплаве внутренних или внешних растягивающих напряжений, которые постепенно расширяют трещины по мере развития коррозионного процесса. Установлено, что при отсутствии кислорода и других окислителей растворы аммиака не могут агрессивно воздействовать на медь и ее сплавы; поэтому можно не опасаться аммиачной коррозии латунных труб при концентрации аммиака в конденсате до 10 мг/дм 3 и отсутствии кислорода. При наличии же даже небольшого количества кислорода аммиак разрушает латунь и другие медные сплавы при концентрации 2–3 мг/дм 3 .

    Коррозии со стороны пара в первую очередь могут подвергаться латунные трубы охладителей выпара, эжекторов и камер отсоса воздуха конденсаторов турбин, где создаются условия, благоприятствующие попаданию воздуха и возникновению местных повышенных концентраций аммиака в частично сконденсированном паре.

    Для предотвращения коррозии конденсаторных труб с водяной стороны необходимо в каждом конкретном случае при выборе металла или сплавов, пригодных для изготовления этих труб, учитывать их коррозионную стойкость при заданном составе охлаждающей воды. Особо серьезное внимание выбору коррозионностойких материалов для изготовления конденсаторных труб должно быть уделено в тех случаях, когда конденсаторы охлаждаются проточной высокоминерализованной водой, а также в условиях восполнения потерь охлаждающей воды в оборотных системах водоснабжения ТЭС, пресными водами, обладающими повышенной минерализованностью, либо загрязненными коррозионноагрессивными промышленными и бытовыми стоками.
    3.7. Коррозия оборудования подпиточного и сетевого трактов
    3.7.1. Коррозия трубопроводов и водогрейных котлов
    Ряд электростанций использует для подпитки тепловых сетей речные и водопроводные воды с низким значением рН и малой жесткостью. Дополнительная обработка речной воды на водопроводной станции обычно приводит к снижению рН, уменьшению щелочности и повышению содержания агрессивной углекислоты. Появление агрессивной углекислоты возможно также в схемах подкисления, применяемых для крупных систем теплоснабжения с непосредственным водоразбором горячей воды (2000–3000 т/ч). Умягчение воды по схеме Na катионирования повышает ее агрессивность вследствие удаления природных ингибиторов коррозии – солей жесткости.

    При плохо налаженной деаэрации воды и возможных повышениях концентраций кислорода и углекислоты из-за отсутствия дополнительных защитных мероприятий в системах теплоснабжения внутренней коррозии подвержены трубопроводы, теплообменные аппараты, аккумуляторные баки и другое оборудование.

    Известно, что повышение температуры способствует развитию коррозионных процессов, протекающих как с поглощением кислорода, так и с выделением водорода. С увеличением температуры выше 40 °С кислородная и углекислотная формы коррозии резко усиливаются.

    Особый вид подшламовой коррозии протекает в условиях незначительного содержания остаточного кислорода (при выполнении норм ПТЭ) и при количестве окислов железа более 400 мкг/дм 3 (в пересчете на Fe). Этот вид коррозии, ранее известный в практике эксплуатации паровых котлов, был обнаружен в условиях сравнительно слабого подогрева и отсутствия тепловых нагрузок. В этом случае рыхлые продукты коррозии, состоящие в основном из гидратированных трехвалентных окислов железа, являются активными деполяризаторами катодного процесса.

    При эксплуатации теплофикационного оборудования нередко наблюдается щелевая коррозия, т. е. избирательное, интенсивное коррозионное разрушение металла в щели (зазоре). Особенностью процессов, протекающих в узких зазорах, является пониженная концентрация кислорода по сравнению с концентрацией в объеме раствора и замедленный отвод продуктов коррозионной реакции. В результате накопления последних и их гидролиза возможно снижение рН раствора в щели.

    При постоянной подпитке тепловой сети с открытым водоразбором деаэрированной водой возможность образования сквозных свищей на трубопроводах полностью исключается только при нормальном гидравлическом режиме, когда во всех точках системы теплоснабжения постоянно поддерживается избыточное давление выше атмосферного.

    Причины язвенной коррозии труб водогрейных котлов и другого оборудования следующие: некачественная деаэрация подпиточной воды; низкое значение рН, обусловленное присутствием агрессивной углекислоты (до 10–15 мг/дм 3); накопление продуктов кислородной коррозии железа (Fe 2 O 3) на теплопередающих поверхностях. Повышенное содержание окислов железа в сетевой воде способствует заносу поверхностей нагрева котла железоокисными отложениями.

    Ряд исследователей признает важную роль в возникновении подшламовой коррозии процесса ржавления труб водогрейных котлов при их простоях, когда не принято должных мер для предупреждения стояночной коррозии. Очаги коррозии, возникающие под воздействием на влажные поверхности котлов атмосферного воздуха, продолжают функционировать при работе котлов.
    3.7.2. Коррозия трубок теплообменных аппаратов
    Коррозионное поведение медных сплавов существенно зависит от температуры и определяется наличием кислорода в воде.

    В табл. 3.1 приведены скорости перехода продуктов коррозии медно-никелевых сплавов и латуни в воду при высоком (200 мкг/дм 3) и низком
    (3 мкг/дм 3) содержании кислорода. Эта скорость приблизительно пропорциональна соответствующей скорости коррозии. Она значительно возрастает при увеличении концентрации кислорода и солесодержания воды.

    В схемах подкисления вода после декарбонизатора часто содержит до 5 мг/дм 3 углекислоты, при этом срок службы трубчатого пучка подогревателей из латуни Л-68 составляет 9–10 мес.
    Таблица 3.1

    Скорость перехода продуктов коррозии в воду с поверхности
    медно-никелевых сплавов и латуни в нейтральной среде, 10 -4 г/(м 2 ·ч)


    Материал

    Содержание О 2 , мкг/дм 3

    Температура, °С

    38

    66

    93

    121

    149

    МН 70-30
    МН 90-10
    ЛО-70-1

    3

    -

    3,8

    4,3

    3,2

    4,5

    Значительное влияние на коррозионное разрушение трубок оказывают образующиеся на поверхности твердые и мягкие отложения. Важен характер этих отложений. Если отложения способны фильтровать воду и в то же время могут задерживать на поверхности трубок медьсодержащие продукты коррозии, локальный процесс разрушения трубок усиливается. Отложения с пористой структурой (твердые отложения накипи, органические) особенно неблагоприятно сказываются на течении коррозионных процессов. С увеличением рН воды проницаемость карбонатных пленок возрастает, а с ростом ее жесткости – резко уменьшается. Этим объясняется, что в схемах с голодной регенерацией фильтров процессы коррозии протекают менее интенсивно, чем в схемах Na-катионирования. Сокращению срока службы трубок способствует также загрязнение их поверхности продуктами коррозии и другими отложениями, приводящее к образованию язв под отложениями. При своевременном удалении загрязнений можно существенно понизить локальную коррозию трубок. Ускоренный выход из строя подогревателей с латунными трубками наблюдается при повышенном солесодержании воды – более 300 мг/дм 3 , а концентрации хлоридов – более 20 мг/дм 3 .

    Средний срок эксплуатации трубок теплообменных аппаратов (3–4 года) может быть увеличен при изготовлении их из коррозионно-стойких материалов. Трубки из нержавеющей стали 1Х18Н9Т, установленные в подпиточном тракте на ряде ТЭЦ с маломинерализованной водой, эксплуатируются более 7 лет без признаков повреждений. Однако в настоящее время трудно рассчитывать на широкое применение нержавеющих сталей из-за высокой их дефицитности. Следует также иметь в виду, что эти стали подвержены питтинговой коррозии при повышенных температуре, солесодержании, концентрации хлоридов и загрязнении отложениями.

    При солесодержании подпиточной и сетевой воды выше 200 мг/дм 3 и хлор-ионов выше 10 мг/дм 3 необходимо ограничить использование латуни Л-68, особенно в подпиточном тракте до деаэратора независимо от схемы водопри-готовления. При использовании умягченной подпиточной воды, содержащей значительные количества агрессивной углекислоты (свыше 1 мг/дм 3), скорость движения потока в аппаратах с трубной системой из латуни должна превышать 1,2 м/с.

    Сплав МНЖ-5-1 следует использовать при температуре подпиточной воды теплосети выше 60 °С.
    Таблица 3.2

    Металл трубок теплообменных аппаратов в зависимости

    От схемы обработки подпиточной воды теплосети


    Схема обработки подпиточной воды

    Металл трубок теплообменников в тракте до деаэратора

    Металл трубок сетевых теплообменников

    Известкование

    Л-68, ЛА-77-2

    Л-68

    Na-катионирование

    ЛА-77-2, МНЖ-5-1

    Л-68

    Н-катионирование с голодной регенерацией фильтров

    ЛА-77-2, МНЖ-5-1

    Л-68

    Подкисление

    ЛА-77-2, МНЖ-5-1

    Л-68

    Мягкая вода без обработки

    Ж о = 0,5 ч 0,6 ммоль/дм 3 ,

    Щ о = 0,2 ч 0,5 ммоль/дм 3 ,

    РН = 6,5 ч 7,5


    ЛА-77-2, МНЖ-5-1

    Л-68

    3.7.3. Оценка коррозионного состояния действующих систем

    горячего водоснабжения и причины коррозии
    Системы горячего водоснабжения по сравнению с другими инженерными сооружениями (системами отопления, холодного водоснабжения и канализации) являются наименее надежными и долговечными. Если установленный и фактический сроки службы зданий оцениваются в 50–100 лет, а систем отопления, холодного водоснабжения и канализации в 20–25 лет, то для систем горячего водоснабжения при закрытой схеме теплоснабжения и выполнении коммуникаций из стальных труб без покрытий фактический срок службы не превышает 10 лет, а в отдельных случаях 2–3 года.

    Трубопроводы горячего водоснабжения без защитных покрытий подвержены внутренней коррозии и значительному загрязнению ее продуктами. Это приводит к снижению пропускной способности коммуникаций, росту гидравлических потерь и нарушениям в подаче горячей воды, особенно на верхние этажи зданий при недостаточных напорах городского водопровода. В крупных системах горячего водоснабжения от центральных тепловых пунктов зарастание трубопроводов продуктами коррозии нарушает регулирование разветвленных систем и ведет к перебоям в подаче горячей воды. Из-за интенсивной коррозии, особенно внешних сетей горячего водоснабжения от ЦТП, возрастают объемы текущих и капитальных ремонтов. Последние связаны с частыми перекладками внутренних (в домах) и внешних коммуникаций, нарушением благоустройства городских территорий внутри кварталов, длительным прекращением подачи горячей воды большому количеству потребителей при выходе из строя головных участков трубопроводов горячего водоснабжения.

    Коррозионные повреждения трубопроводов горячего водоснабжения от ЦТП в случае их совместной прокладки с разводящими сетями отопления приводят к затоплению последних горячей водой и их интенсивной внешней коррозии. При этом возникают большие трудности в обнаружении мест аварий, приходится выполнять большой объем земляных работ и ухудшать благоустройство жилых районов.

    При незначительных различиях в капиталовложениях на сооружение систем горячего, холодного водоснабжения и отопления эксплуатационные расходы, связанные с частой перекладкой и ремонтом коммуникаций горячего водоснабжения, несоизмеримо более высокие.

    Коррозия систем горячего водоснабжения и защита от нее приобретают особо важное значение в связи с размахом жилищного строительства в России. Тенденция укрупнения мощностей единичных установок приводит к разветвлению сети трубопроводов горячего водоснабжения, выполняемых, как правило, из обычных стальных труб без защитных покрытий. Все возрастающий дефицит воды питьевого качества обусловливает использование новых источников воды с высокой коррозионной активностью.

    Одной из основных причин, влияющих на состояние систем горячего водоснабжения, является высокая коррозионная активность нагретой водопроводной воды. Согласно исследованиям ВТИ, коррозионная активность воды независимо от источника водоснабжения (поверхностный или подземный) характеризуется тремя основными показателями: индексом равновесного насыщения воды карбонатом кальция, содержанием растворенного кислорода и суммарной концентрацией хлоридов и сульфатов. Ранее в отечественной литературе не приводилась классификация нагретой водопроводной воды по коррозионной активности в зависимости от показателей исходной воды.

    При отсутствии условий образования защитных карбонатных пленок на металле (j
    Данные наблюдений за действующими системами горячего водоснабжения указывают на значительное влияние находящихся в водопроводной воде хлоридов и сульфатов на коррозию трубопроводов. Так, воды даже с положительным индексом насыщения, но содержащие хлориды и сульфаты в концентрациях свыше 50 мг/дм 3 , являются коррозионно-активными, что обусловлено нарушением сплошности карбонатных пленок и снижением их защитного действия под влиянием хлоридов и сульфатов. При разрушении защитных пленок присутствующие в воде хлориды и сульфаты усиливают коррозию стали под действием кислорода.

    Исходя из принятой в теплоэнергетике шкалы коррозии и опытных данных ВТИ, по скорости коррозии стальных труб в нагретой питьевой воде предложена условная коррозионная классификация водопроводных вод при расчетной температуре 60 °С (табл. 3.3).

    Рис. 3.2. Зависимость глубинного показателя П коррозии стальных труб в нагретой водопроводной воде (60 °С) от расчетного индекса насыщения J:

    1, 2, 3 – поверхностный источник
    ; 4 – подземный источник
    ; 5 – поверхностный источник

    На рис. 3.2. приведены опытные данные по скорости коррозии в образцах стальных труб при различном качестве водопроводной воды. На графике прослеживается определенная закономерность снижения глубинного показателя коррозии (глубинной проницаемости) с изменением расчетного индекса насыщения воды (при содержании хлоридов и сульфатов до 50 мг/дм 3). При отрицательных значениях индекса насыщения глубинная проницаемость соответствует аварийной и сильной коррозии (точки 1 и 2); для речной воды с положительным индексом насыщения (точка 3) допустимой коррозии, а для артезианской воды (точка 4) – слабой коррозии. Обращает на себя внимание тот факт, что для артезианской и речной воды с положительным индексом насыщения и содержанием хлоридов и сульфатов менее 50 мг/дм 3 различия в глубинной проницаемости коррозии сравнительно невелики. Это значит, что в водах, склонных к образованию на стенках труб окисно-карбонатной пленки (j > 0), присутствие растворенного кислорода (высокое в поверхностной и незначительное в подземной воде) не оказывает заметного влияния на изменение глубинной проницаемости коррозии. Вместе с тем данные испытаний (точка 5) свидетельствуют о значительном росте интенсивности коррозии стали в воде с высокой концентрацией хлоридов и сульфатов (в сумме около 200 мг/дм 3), несмотря на положительный индекс насыщения (j = 0,5). Проницаемость коррозии в этом случае соответствует проницаемости в воде, имеющей индекс насыщения j = – 0,4. В соответствии с классификацией вод по коррозионной активности вода с положительным индексом насыщения и повышенным содержанием хлоридов и сульфатов относится к коррозионной.
    Таблица 3.3

    Классификация воды по коррозионной активности


    J при 60 °С

    Концентрация в холодной воде, мг/дм 3

    Коррозионная характеристика нагретой воды (при 60 °С)

    растворенного
    кислорода О 2

    хлоридов и сульфатов (в сумме)





    Любая

    Любая

    Сильнокоррозионная




    Любая

    >50

    Сильнокоррозионная



    Любая




    Коррозионная




    Любая

    >50

    Слабокоррозионная



    >5



    Слабокоррозионная







    Некоррозионная

    Разработанная ВТИ классификация (табл. 3.3) достаточно полно отражает влияние качества воды на ее коррозионные свойства, что подтверждается данными о фактическом коррозионном состоянии систем горячего водоснабжения.

    Анализ основных показателей водопроводной воды в ряде городов позволяет отнести большинство вод к типу сильнокоррозионных и коррозионных и только незначительную часть к типу слабокоррозионных и некоррозионных. Для большой доли источников характерна повышенная концентрация хлоридов и сульфатов (более 50 мг/дм 3), и есть примеры, когда эти концентрации в сумме достигают 400–450 мг/дм 3 . Столь значительное содержание хлоридов и сульфатов в водопроводных водах обусловливает их высокую коррозионную активность.

    При оценке коррозионной активности поверхностных вод необходимо учитывать непостоянство их состава в течение года. Для более надежной оценки следует пользоваться данными не единичных, а возможно большего числа анализов воды, выполненных в разные сезоны за один – два последних года.

    Для артезианских источников показатели качества воды обычно очень стабильны в течение года. Как правило, подземные воды характеризуются повышенной минерализацией, положительным индексом насыщения по карбонату кальция и высоким суммарным содержанием хлоридов и сульфатов. Последнее приводит к тому, что системы горячего водоснабжения в некоторых городах, получающие воду из артезианских скважин, также подвержены сильной коррозии.

    Когда в одном городе есть несколько источников питьевой воды, интенсивность и массовость коррозионных повреждений систем горячего водоснабжения могут быть различными. Так, в Киеве имеются три источника водоснабжения:
    р. Днепр, р. Десна и артезианские скважины. Наиболее сильной коррозии подвержены системы горячего водоснабжения в районах города, снабжаемых коррозионной днепровской водой, в меньшей степени – системы, эксплуатируемые на слабокоррозионной деснянской воде, и в еще меньшей степени – на артезианской воде. Наличие районов в городе с разной коррозионной характеристикой водопроводной воды сильно затрудняет организацию противокоррозионных мероприятий как на стадии проектирования, так и в условиях эксплуатации систем горячего водоснабжения.

    Для оценки коррозионного состояния систем горячего водоснабжения были проведены их обследования в ряде городов. Экспериментальные исследования скорости коррозии труб с помощью трубчатых и пластинчатых образцов были выполнены в районах нового жилищного строительства городов Москвы, Санкт-Петербурга и др. Результаты обследования показали, что состояние трубопроводов находится в прямой зависимости от коррозионной активности водопроводной воды.

    Существенное влияние на размеры коррозионных повреждений в системе горячего водоснабжения оказывает высокая централизация установок по нагреву воды на центральных тепловых пунктах или теплораспределительных станциях (ТРС). Первоначально широкое строительство ЦТП в России было обусловлено рядом причин: отсутствием в новых жилых домах подвальных помещений, пригодных для размещения оборудования горячего водоснабжения; недопустимостью установки обычных (не бесшумных) циркуляционных насосов в индивидуальных тепловых пунктах; ожидаемым сокращением обслуживающего персонала в результате замены сравнительно мелких подогревателей, устанавливаемых в индивидуальных тепловых пунктах, крупными; необходимостью повышения уровня эксплуатации ЦТП путем их автоматизации и улучшения обслуживания; возможностью сооружения крупных установок по противокоррозионной обработке воды для систем горячего водоснабжения.

    Однако как показал опыт эксплуатации ЦТП и систем горячего водоснабжения от них, количество обслуживающего персонала не сократилось из-за необходимости выполнять большой объем работ при текущем и капитальном ремонтах систем горячего водоснабжения. Централизованная противокоррозионная обработка воды на ЦТП не получила широкого распространения из-за сложности установок, высоких начальных и эксплуатационных затрат и отсутствия стандартного оборудования (вакуумная деаэрация).

    В условиях, когда для систем горячего водоснабжения применяются преимущественно стальные трубы без защитных покрытий, при высокой коррозионной активности водопроводных вод и отсутствии на ЦТП противокоррозионной обработки воды дальнейшее строительство только ЦТП, по-видимому, нецелесообразно. Строительство в последние годы домов новых серий с подвальными помещениями и производство бесшумных центробежных насосов будут способствовать переходу во многих случаях к проектированию индивидуальных тепловых пунктов (ИТП) и повышению надежности горячего водоснабжения.

    3.8. Консервация теплоэнергетического оборудования

    и теплосетей

    3.8.1. Общее положение

    Консервация оборудования – это защита от так называемой стояночной коррозии.

    Консервация котлов и турбоустановок для предотвращения коррозии металла внутренних поверхностей осуществляется при режимных остановках и выводе в резерв на определенный и неопределенный сроки: вывод – в текущий, средний, капитальный ремонт; аварийные остановы, в продолжительный резерв или ремонт, на реконструкцию на срок выше 6 месяцев.

    На основе производственной инструкции на каждой электростанции, котельной должно быть разработано и утверждено техническое решение по организации консервации конкретного оборудования, определяюще способы консервации при различных видах остановов и продолжительности простоя технологической схемы и вспомогательного оборудования.

    При разработке технологической схемы консервации целесообразно максимально использовать штатные установки коррекционной обработки питательной и котловой воды, установки химической очистки оборудования, баковое хозяйство электростанции.

    Технологическая схема консервации должна быть по возможности стационарной, надежно отключаться от работающих участков тепловой схемы.

    Необходимо предусматривать нейтрализацию или обезвреживание сбросных вод а, также возможность повторного использования консервирующих растворов.

    B соответствии с принятым техническим решением составляется и утверждается инструкция по консервации оборудования с указаниями по подготовительным операциям, технологии консервации и расконсервации, а также по мерам безопасности при проведении консервации.

    При подготовке и проведении работ по консервации и расконсервации необходимо соблюдать требования Правил техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей. Также при необходимости должны быть приняты дополнительные меры безопасности, связанные со свойствами используемых химических реагентов.

    Нейтрализация и очистка отработанных консервирующих растворов химических реагентов должна осуществляться в соответствии с директивными документами.
    3.8.2. Способы консервации барабанных котлов
    1. «Сухой» останов котла.

    Сухой останов применяется для котлов любых давлений при отсутствии в них вальцовочных соединений труб с барабаном.

    Сухой останов проводится при плановом останове в резерв или ремонт на срок до 30 суток, а также при аварийном останове.

    Методика сухого останова заключается в следующем.

    После останова котла в процессе его естественного остывания или расхолаживания дренирование начинается при давлении 0,8 – 1,0 МПа. Промежуточный пароперегреватель обеспаривают на конденсатор. После дренирования закрывают все вентили и задвижки пароводяной схемы котла.

    Дренирование котла при давлении 0,8 – 1,0 МПа позволяет после его опорожнения сохранить температуру металла в котле выше температуры насыщения при атмосферном давлении за счет тепла, аккумулированного металлом, обмуровкой и изоляцией. При этом происходит подсушка внутренних поверх­ностей барабана, коллекторов и труб.

    2. Поддержание в котле избыточного давления.

    Поддержание в котле давления выше атмосферного предотвращает доступ в него кислорода, воздуха. Избыточное давление поддерживается при протоке через котел деаэрированной воды. Консервация при поддержании избыточного давления применяется для котлов любых типов и давлений. Этот способ осуществляется при выводе котла в резерв или ремонт, не связанный с работами на поверхностях нагрева, на срок до 10 суток. На котлах с вальцовочными соединениями труб с барабаном допускается применение избыточного давления на срок до 30 суток.

    3. Кроме указанных способов консервации на барабанных котлах применяются:

    Гидразинная обработка поверхностей нагрева при рабочих параметрах котла;

    Гидразинная обработка при пониженных параметрах пара;

    Гидразинная «выварка» поверхностей нагрева котла;

    Трилонная обработка поверхностей нагрева котла;

    Фосфатно-аммиачная «выварка»;

    Заполнение поверхностей нагрева котла защитными щелочными раство­рами;

    Заполнение поверхностей нагрева котла азотом;

    Консервация котла контактным ингибитором.

    3.8.3. Способы консервации прямоточных котлов
    1. «Сухой» останов котла.

    Сухой останов применяется на всех прямоточных котлах независимо от принятого водно-химического режима. Он проводится при любых плановых и аварийных остановах на срок до 30 суток. Пар из котла частично выпускают в конденсатор так, чтобы в течение 20–30 мин давление в котле снизилось до
    30–40 кгс/см 2 (3–4 МПа). Открывают дренажи входных коллекторов и водяного экономайзера. При снижении давления до нуля котел обеспаривают на конденсатор. Вакуум поддерживают не менее 15 мин.

    2. Гидразинная и кислородная обработка поверхностей нагрева при рабочих параметрах котла.

    Гидразинная и кислородная обработка проводится в сочетании с сухим остановом. Методика проведения гидразинной обработки прямоточного котла такая же, как и барабанного.

    3. Заполнение поверхностей нагрева котла азотом.

    Заполнение котла азотом осуществляется при избыточном давлении в поверхностях нагрева. Консервация азотом применяется на котлах любых давлений на электростанциях, имеющих азот от собственных установок!

    4. Консервация котла контактным ингибитором.

    Консервация котла контактным ингибитором применяется для любых типов котлов независимо от применяемого водно-химического режима и проводится при выводе котла в резерв или ремонт на срок от 1 месяца до 2 лет.
    3.8.4. Способы консервации водогрейных котлов
    1. Консервация раствором гидроксида кальция.

    Защитная пленка сохраняется в течение 2–3 месяцев после опорожнения котла от раствора после 3–4 или более недель контакта. Гидроксид кальция применяется для консервации водогрейных котлов любых типов на электростанциях, котельных, имеющих водоподготовительные установки с известковым хозяйством. Способ основан на высокоэффективных ингибирующих способностях раствора гидроксида кальция Са(ОН) 2 . Защитной концентрацией гидроксида кальция является 0,7 г/дм 3 и выше. При контакте с металлом его устойчивая защитная пленка формируется в течение 3–4 недель.

    2. Консервация раствором силиката натрия.

    Силикат натрия применяется для консервации водогрейных котлов любых видов при выводе котла в резерв на срок до 6 месяцев или выводе котла в ремонт на срок до 2 месяцев.

    Силикат натрия (жидкое натриевое стекло) образует на поверхности металла прочную защитную пленку в виде соединения Fe 3 O 4 ·FeSiO 3 . Эта пленка экранирует металл от воздействия коррозионных агентов (СО 2 и О 2). При осуществлении данного способа водогрейный котел полностью заполняется раствором силиката натрия с концентрацией SiO 2 в консервирующем растворе не менее 1,5 г/дм 3 .

    Формирование защитной пленки происходит при выдержке консервирующего раствора в котле в течение нескольких суток или циркуляции раствора через котел в течение нескольких часов.
    3.8.5. Способы консервации турбоустановок
    Консервация подогретым воздухом. Продувка турбоустановки горячим воздухом предотвращает попадание во внутренние полости влажного воздуха и протекание коррозионных процессов. Особенно опасно попадание влаги на поверхности проточной части турбины при наличии на них отложений соединений натрия. Консервация турбоустановки подогретым воздухом проводится при выводе в резерв на срок 7 суток и более.

    Консервация азотом. При заполнении внутренних полостей турбоустановки азотом и поддержании в дальнейшем небольшого его избыточного давления предотвращается попадание влажного воздуха. Подачу азота в турбину начинают после останова турбины и окончания вакуумной сушки промежуточного пароперегревателя. Консервацию азотом можно применять и для паровых пространств бойлеров и подогревателей.

    Консервация коррозии летучими ингибиторами. Летучие ингибиторы коррозии типа ИФХАН защищают стали, медь, латунь, адсорбируясь на поверхности металла. Этот адсорбционный слой значительно снижает скорость электрохимических реакций, обусловливающих коррозионный процесс.

    Для консервации турбоустановки осуществляется просасывание через турбину воздуха, насыщенного ингибитором. Насыщение воздуха ингибитором происходит при контакте его с силикагелем, пропитанным ингибитором, так называемым линасилем. Пропитка линасиля осуществляется на заводе-изготовителе. Для поглощения избытка ингибитора на выходе из турбоустановки воздух проходит через чистый силикагель. Для консервации 1 м 3 объема требуется не менее 300 г линасиля, защитная концентрация ингибитора в воздухе составляет 0,015 г/дм 3 .
    3.8.6. Консервация тепловых сетей
    При силикатной обработке подпиточной воды образуется защитная пленка от воздействия СО 2 и О 2 . При этом с непосредственным разбором горячей воды содержание силиката в подпиточной воде должно быть не более 50 мг/дм 3 в пересчете на SiO 2 .

    При силикатной обработке подпиточной воды предельная концентрация кальция должна определяться с учетом суммарной концентрации не только сульфатов (для предотвращения выпадения CaSO 4), но и кремниевой кислоты (для предотвращения выпадения CaSiО 3) для заданной температуры нагрева сетевой воды с учетом труб котла 40 °C (ПТЭ 4.8.39).

    При закрытой системе теплоснабжения рабочая концентрация SiО 2 в консервирующем растворе может быть 1,5 – 2 г/дм 3 .

    Если не производить консервацию раствором силиката натрия, то тепловые сети в летний период должны быть всегда заполнены сетевой водой, отвечающей требованиям ПТЭ 4.8.40.

    3.8.7. Краткие характеристики применяемых химических реагентов
    для консервации и меры предосторожности при работе с ними

    Водный раствор гидразингидрата N 2 Н 4 ·Н 2 О

    Раствор гидразингидрата – бесцветная жидкость, легко поглощающая из воздуха воду, углекислоту и кислород. Гидразингидрат является сильным восстановителем. Токсичность (класс опасности) гидразина – 1.

    Водные растворы гидразина концентрацией до 30% не огнеопасны – перевозить и хранить их можно в сосудах из углеродистой стали.

    При работе с растворами гидразингидрата необходимо исключить попадание в них пористых веществ, органических соединений.

    К местам приготовления и хранения растворов гидразина должны быть подведены шланги для смыва водой пролитого раствора с оборудования. Для нейтрализации и обезвреживания должна быть приготовлена хлорная известь.

    Попавший на пол раствор гидразина следует засыпать хлорной известью и смыть большим количеством воды.

    Водные растворы гидразина могут вызывать дерматит кожи и раздражать дыхательные пути и глаза. Соединения гидразина попадая в организм, вызывают изменения в печени и крови.

    При работе с растворами гидразина необходимо пользоваться личными очками, резиновыми перчатками, резиновым передником, противогазом марки КД.

    Попавшие на кожу и в глаза капли раствора гидразина необходимо смыть большим количеством воды.
    Водный раствор аммиака NH 4 (OH )

    Водный раствор аммиака (аммиачная вода) – бесцветная жидкость с резким специфическим запахом. При комнатной температуре и особенно при нагревании обильно выделяет аммиак. Токсичность (класс опасности) аммиака – 4. Предельно допустимая концентрация аммиака в воздухе – 0,02 мг/дм 3 . Раствор аммиака обладает щелочной реакцией. При работе с аммиаком необходимо выполнять следующие требования техники безопасности:

    – раствор аммиака должен храниться в баке с герметичной крышкой;

    – пролитый раствор аммиака должен смываться большим количеством воды;

    – при необходимости ремонта оборудования, используемого для приготовления и дозирования аммиака, его следует тщательно промыть водой;

    – водный раствор и пары аммиака вызывают раздражение глаз, дыхательных путей, тошноту и головную боль. Особенно опасно попадание аммиака в глаза;

    – при работе с раствором аммиака необходимо использовать защитные очки;

    – попавший на кожу и в глаза аммиак необходимо смыть большим количеством воды.

    Трилон Б
    Товарный трилон Б – порошкообразное вещество белого цвета.

    Раствор трилона стоек, не разлагается при длительном кипячении. Растворимость трилона Б при температуре 20–40 °С составляет 108–137 г/дм 3 . Значение рН этих растворов около 5,5.

    Товарный трилон Б поставляется в бумажных мешках с полиэтиленовым вкладышем. Храниться реагент должен в закрытом сухом помещении.

    Заметного физиологического воздействия на организм человека трилон Б не оказывает.

    При работе с товарным трилоном необходимо применять респиратор, рукавицы и защитные очки.
    Тринатрийфосфат Na 3 PO 4 ·12Н 2 О
    Тринатрийфосфат – белое кристаллическое вещество, хорошо растворимое в воде.

    В кристаллическом виде специфического действия на организм не оказывает.

    В пылевидном состоянии, попадая в дыхательные пути или глаза раздражает слизистые оболочки.

    Горячие растворы фосфата опасны при попадании брызг в глаза.

    При проведении работ, сопровождающихся пылением, необходимо использовать респиратор и защитные очки. При работе с горячим раствором фосфата применять защитные очки.

    При попадании на кожу или в глаза надо смыть большим количеством воды.
    Едкий натр NaOH
    Едкий натр – белое, твердое, очень гигроскопичное вещество, хорошо растворимое в воде (при температуре 20 °С растворимость составляет 1070 г/дм 3).

    Раствор едкого натра – бесцветная жидкость тяжелее воды. Температура замерзания 6-процентного раствора минус 5 °С, 41,8-процентного – 0 °С.

    Едкий натр в твердом кристаллическом виде перевозится и хранится в стальных барабанах, а жидкая щелочь – в стальных емкостях.

    Попавший на пол едкий натр (кристаллический или жидкий) следует смыть водой.

    При необходимости ремонта оборудования, используемого для приготовления и дозирования щелочи, его следует промыть водой.

    Твердый едкий натр и его растворы вызывают сильные ожоги, особенно при попадании в глаза.

    При работе с едким натром необходимо предусмотреть аптечку, содержащую вату, 3-процентный раствор уксусной кислоты и 2-процентный раствор борной кислоты.

    Индивидуальные средства защиты при работе с едким натром – хлопчатобумажный костюм, защитные очки, прорезиненный фартук, резиновые сапоги, резиновые перчатки.

    При попадании щелочи на кожу ее необходимо удалить ватой, промыть пораженное место уксусной кислотой. При попадании щелочи в глаза необходимо промыть их струей воды, а затем раствором борной кислоты и обратиться в медпункт.
    Силикат натрия (жидкое стекло натриевое)
    Товарное жидкое стекло представляет собой густой раствор желтого или серого цвета, содержание SiO 2 в нем 31 – 33 %.

    Силикат натрия поступает в стальных бочках или цистернах. Жидкое стекло следует хранить в сухих закрытых помещениях при температуре не ниже плюс 5 °С.

    Силикат натрия – щелочной продукт, хорошо растворяется в воде при температуре 20 - 40 °С.

    При попадании на кожу раствора жидкого стекла его следует смыть водой.
    Гидроксид кальция (известковый раствор) Са(ОН) 2
    Известковый раствор – прозрачная жидкость без цвета и запаха, нетоксична и обладает слабой щелочной реакцией.

    Раствор гидроксида кальция получается при отстаивании известкового молока. Растворимость гидроксида кальция мала – не более 1,4 г/дм 3 при 25 °С.

    При работе с известковым раствором людям с чувствительной кожей рекомендуется работать в резиновых перчатках.

    При попадании раствора на кожу или в глаза необходимо смыть его водой.
    Контактный ингибитор
    Ингибитор М-1 является солью циклогексиламина (ТУ 113-03-13-10-86) и синтетических жирных кислот фракции С 10-13 (ГОСТ 23279-78). В товарном виде представляет собой пастообразное или твердое вещество от темно-желтого до коричневого цвета. Температура плавления ингибитора выше 30 °С, массовая доля циклогексиламина 31–34 %, pH спиртоводного раствора с массовой долей основного вещества 1 % равен 7,5–8,5; плотность водного раствора 3-процентного при температуре 20 °С составляет 0,995 – 0,996 г/дм 3 .

    Ингибитор М-1 поставляется в стальных барабанах, металлических флягах, стальных бочках. На каждом грузовом месте должна быть маркировка со следующими данными: наименование предприятия-изготовителя, наименование ингибитора, номер партии, дата изготовления, масса нетто, брутто.

    Товарный ингибитор относится к горючим веществам и должен храниться на складе в соответствии с правилами хранения горючих веществ. Водный раствор ингибитора не огнеопасен.

    Попавший на пол раствор ингибитора необходимо смыть большим количеством воды.

    При необходимости ремонта оборудования, используемого для хранения и приготовления раствора ингибитора, его следует тщательно промыть водой.

    Ингибитор М-1 относится к третьему классу (вещества умеренно опасные). ПДК в воздухе рабочей зоны для ингибитора не должна превышать 10 мг/дм 3 .

    Ингибитор химически устойчив, не образует токсичных соединений в воздухе и сточных водах в присутствии других веществ или факторов производственной сферы.

    Лица, занятые на работах с ингибитором, должны иметь хлопчатобумажный костюм или халат, рукавицы, головной убор.

    По окончании работ с ингибитором необходимо вымыть руки теплой водой с мылом.
    Летучие ингибиторы
    Летучий ингибитор атмосферной коррозии ИФХАН-1 (1-диэтиламино-2 метилбутанон-3) представляет собой прозрачную жидкость желтоватого цвета с резким специфическим запахом.

    Жидкий ингибитор ИФХАН-1 по степени воздействия относится к высокоопасным веществам. ПДК паров ингибитора в воздухе рабочей зоны не должна превышать 0,1 мг/дм 3 . Ингибитор ИФХАН-1 в высоких дозах вызывает возбуждение центральной нервной системы, раздражающее действие на слизистые оболочки глаз, верхних дыхательных путей. Длительное воздействие ингибитора на незащищенную кожу может вызвать дерматит.

    Ингибитор ИФХАН-1 химически устойчив и не образует токсичных соединений в воздухе и сточных водах в присутствии других веществ.

    Жидкий ингибитор ИФХАН-1 относится к легковоспламеняющимся жидкостям. Температура воспламенения жидкого ингибитора 47 °С, температура самовоспламенения 315 °С. При загорании применяются следующие средства пожаротушения: кошма, пенные огнетушители, огнетушители ОУ.

    Уборка помещений должна проводиться влажным способом.

    При работе с ингибитором ИФХАН-1 необходимо применять средства индивидуальной защиты – костюм из хлопчатобумажной ткани (халат), резиновые перчатки.

    Ингибитор ИФХАН-100 , также являющийся производным аминов, менее токсичен. Относительно безопасный уровень воздействия – 10 мг/дм 3 ; температура воспламенения 114 °С, самовоспламенения 241 °С.

    Меры безопасности при работе с ингибитором ИФХАН-100 те же, что и при работе с ингибитором ИФХАН-1.

    Запрещается проведение работ внутри оборудования до его расконсервации.

    При высоких концентрациях ингибитора в воздухе или при необходимости работы внутри оборудования после его расконсервации следует применять противогаз марки А с коробкой фильтрующей марки А (ГОСТ 12.4.121-83 и
    ГОСТ 12.4.122-83). Предварительно оборудование следует провентилировать. Работы внутри оборудования после расконсервации следует проводить бригадой из двух человек.

    После окончания работы с ингибитором необходимо вымыть руки с мылом.

    В случае попадания жидкого ингибитора на кожу надо смыть его водой с мылом, при попадании в глаза - промыть их обильной струей воды.
    Контрольные вопросы


    1. Виды коррозионных процессов.

    2. Охарактеризуйте химическую и электрохимическую коррозию.

    3. Влияние внешних и внутренних факторов на коррозию металла.

    4. Коррозия конденсатно-питательного тракта котлоагрегатов и тепловых сетей.

    5. Коррозия паровых турбин.

    6. Коррозия оборудования подпиточного и сетевого трактов теплосети.

    7. Основные способы обработки воды для снижения интенсивности коррозии теплосети.

    8. Цель консервации теплоэнергетического оборудования.

    9. Перечислите способы консервации:
    а) паровых котлов;

    Б) водогрейных котлов;

    В) турбоустановок;

    Г) тепловых сетей.

    10. Дайте краткую характеристику применяемых химических реагентов.



    Владельцы патента RU 2503747:

    ОБЛАСТЬ ТЕХНИКИ

    Изобретение относится к теплоэнергетике и может быть использовано для защиты от накипи нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе текущей эксплуатации.

    УРОВЕНЬ ТЕХНИКИ

    Эксплуатация паровых котлов связана с одновременным воздействием высоких температур, давления, механических напряжений и агрессивной среды, которой является котловая вода. Котловая вода и металл поверхностей нагрева котла представляют собой отдельные фазы сложной системы, которая образуется при их контакте. Итогом взаимодействия этих фаз являются поверхностные процессы, возникающие на границе их раздела. В результате этого в металле поверхностей нагрева возникают явления коррозии и образования накипи, что приводит к изменению структуры и механических свойств металла, и что способствует развитию различных повреждений. Поскольку теплопроводность накипи в пятьдесят раз ниже, чем у железа нагревательных труб, то имеют место потери тепловой энергии при теплопередаче - при толщине накипи 1 мм от 7 до 12%, а при 3 мм - 25%. Сильное образование накипи в системе парового котла непрерывного действия часто приводит к остановке производства на несколько дней в году для удаления накипи.

    Качество питательной и, следовательно, котловой воды определяется присутствием примесей, которые могут вызывать различные виды коррозии металла внутренних поверхностей нагрева, образования первичной накипи на них, а также шлама, как источника образования вторичной накипи. Кроме того, качество котловой воды зависит и от свойств веществ, образующихся в результате поверхностных явлений при транспортировке воды, и конденсата по трубопроводам, в процессах водообработки. Удаление примесей из питательной воды является одним из способов предотвращения образования накипи и коррозии и осуществляется методами предварительной (докотловой) обработки воды, которые направлены на максимальное удаление примесей, находящихся в исходной воде. Однако применяемые методы не позволяют полностью исключить содержание примесей в воде, что связано не только с трудностями технического характера, но и экономической целесообразностью применения методов докотловой обработки воды. Кроме того, поскольку водоподготовка представляет сложную техническую систему, она является избыточной для котлов малой и средней производительности.

    Известные методы удаления уже образовавшихся отложений используют в основном механические и химические способы очистки. Недостатком этих способов является то, что они не могут производиться в ходе эксплуатации котлов. Кроме того, способы химической очистки часто требуют использования дорогостоящих химических веществ.

    Известны также способы предотвращения образования накипи и коррозии, осуществляемые в процессе работы котлов.

    В патенте US 1877389 предложен способ удаления накипи и предотвращения ее образования в водогрейных и паровых котлах. В этом способе поверхность котла представляет собой катод, а анод размещен внутри трубопровода. Способ заключается в пропускании постоянного или переменного тока через систему. Авторы отмечают, что механизм действия способа заключается в том, что под действием электрического тока на поверхности котла образуются пузырьки газа, которые приводят к отслоению существующей накипи и препятствуют образованию новой. Недостатком указанного способа является необходимость постоянно поддерживать протекание электрического тока в системе.

    В патенте US 5667677 предложен способ обработки жидкости, в частности воды, в трубопроводе с целью замедления образования накипи. Указанный способ основан на создании в трубах электромагнитного поля, которое отталкивает растворенные в воде ионы кальция, магния от стенок труб и оборудования, не давая им кристаллизоваться в виде накипи, что позволяет эксплуатировать котлы, бойлеры, теплообменники, системы охлаждения на жесткой воде. Недостатком указанного способа является дороговизна и сложность используемого оборудования.

    В заявке WO 2004016833 предложен способ уменьшения образования накипи на металлической поверхности, подвергающейся воздействию пересыщенного щелочного водного раствора, из которого способна образовываться накипь после периода воздействия, включающий приложение катодного потенциала к указанной поверхности.

    Указанный способ может использоваться в различных технологических процессах, в которых металл находится в контакте с водным раствором, в частности, в теплообменниках. Недостатком указанного способа является то, что он не обеспечивает защиту металлической поверхности от коррозии после снятия катодного потенциала.

    Таким образом, в настоящее время существует потребность в разработке улучшенного способа предотвращения образования накипи нагревательных труб, водогрейных и паровых котлов, который был бы экономичным и высокоэффективным и обеспечивал антикоррозионную защиту поверхности в течение длительного промежутка времени после воздействия.

    В настоящем изобретении указанная задача решена с помощью способа, согласно которому на металлической поверхности создается токоотводящий электрический потенциал, достаточный для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов к металлической поверхности.

    КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

    Задачей настоящего изобретения является обеспечение улучшенного способа предотвращения образования накипи нагревательных труб водогрейных и паровых котлов.

    Другой задачей настоящего изобретения является обеспечение возможности исключения или значительного уменьшения необходимости удаления накипи в процессе эксплуатации водогрейных и паровых котлов.

    Еще одной задачей настоящего изобретения является исключение необходимости использования расходных реагентов для предотвращения образования накипи и коррозии нагревательных труб водогрейных и паровых котлов.

    Еще одной задачей настоящего изобретения является обеспечение возможности начала работы по предотвращению образования накипи и коррозии нагревательных труб водогрейных и паровых котлов на загрязненных трубах котла.

    Настоящее изобретение относится к способу предотвращения образования накипи и коррозии на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь. Указанный способ заключается в приложении к указанной металлической поверхности токоотводящего электрического потенциала, достаточного для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов к металлической поверхности.

    Согласно некоторым частным вариантам реализации заявленного способа токоотводящий потенциал устанавливают в пределах 61-150 В. Согласно некоторым частным вариантам реализации заявленного способа вышеуказанный железосодержащий сплав представляет собой сталь. В некоторых вариантах реализации металлическая поверхность представляет собой внутреннюю поверхность нагревательных труб водогрейного или парового котла.

    Раскрытый в данном описании способ имеет следующие преимущества. Одним преимуществом способа является уменьшенное образование накипи. Другим преимуществом настоящего изобретения является возможность использования однажды закупленного работающего электрофизического аппарата без необходимости использования расходных синтетических реагентов. Еще одним преимуществом является возможность начала работы на загрязненных трубках котла.

    Техническим результатом настоящего изобретения, таким образом, является повышение эффективности работы водогрейных и паровых котлов, повышение производительности, увеличение эффективности теплопередачи, снижение расходов топлива на нагрев котла, экономия энергии и пр.

    Другие технические результаты и преимущества настоящего изобретения включают обеспечение возможности послойного разрушения и удаления уже образовавшейся накипи, а также предотвращения ее нового образования.

    КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

    На Фиг.1 показан характер распределения отложений на внутренних поверхностях котла в результате применения способа согласно настоящему изобретению.

    ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

    Способ согласно настоящему изобретению заключается в приложении к металлической поверхности, подверженной образованию накипи, токоотводящего электрического потенциала, достаточного для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов, образующих накипь, к металлической поверхности.

    Термин «токоотводящий электрический потенциал» в том смысле, в каком он используется в данной заявке, означает переменный потенциал, нейтрализующий двойной электрический слой на границе металла и пароводяной среды, содержащей соли, приводящие к образованию накипи.

    Как известно специалисту в данной области техники, носителями электрического заряда в металле, медленными по сравнению с основными носителями заряда -электронами, являются дислокации его кристаллической структуры, которые несут на себе электрический заряд и образуют дислокационные токи. Выходя на поверхность нагревательных труб котла, эти токи входят в состав двойного электрического слоя при образовании накипи. Токоотводящий, электрический, пульсирующий (то есть переменный) потенциал инициирует отведение электрического заряда дислокаций с поверхности металла на землю. В этом отношении он является токоотводящим дислокационные токи. В результате действия этого токоотводящего электрического потенциала двойной электрический слой разрушается, и накипь постепенно распадается и переходит в котельную воду в виде шлама, который удаляется из котла при периодических его продувках.

    Таким образом, термин «токоотводящий потенциал» понятен для специалиста в данной области техники и, кроме того, известен из уровня техники (см., например, патент RU 2128804 С1).

    В качестве устройства для создания токоотводящего электрического потенциала может, например, быть использовано устройство, описанное в RU 2100492 С1, которое включает в себя конвертер с частотным преобразователем и регулятором пульсирующего потенциала, а также регулятор формы импульсов. Подробное описание этого устройства дано в RU 2100492 С1. Также может быть использовано любое другое аналогичное устройство, как будет понятно специалисту в данной области техники.

    Токоотводящий электрический потенциал согласно настоящему изобретению может быть приложен к любой части металлической поверхности, удаленной от основания котла. Место приложения определяется удобством и/или эффективностью применения заявленного способа. Специалист в данной области техники, используя информацию, раскрытую в настоящем описании, и используя стандартные методики испытаний, сможет определить оптимальное место приложения токоотводящего электрического потенциала.

    В некоторых вариантах реализации настоящего изобретения токоотводящий электрический потенциал является переменным.

    Токоотводящий электрический потенциал согласно настоящему изобретению может быть приложен в течение различных периодов времени. Время приложения потенциала определяется характером и степенью загрязненности металлической поверхности, составом используемой воды, температурным режимом и особенностями работы теплотехнического устройства и другими факторами, известными специалистам в данной обрасти техники. Специалист в данной области техники, используя информацию, раскрытую в настоящем описании и используя стандартные методики испытаний, сможет определить оптимальное время приложения токоотводящего электрического потенциала, исходя из поставленных целей, условий и состояния теплотехнического устройства.

    Величина токоотводящего потенциала, требуемая для нейтрализации электростатической составляющей силы адгезии, может быть определена специалистом в области коллоидной химии на основании сведений известных из уровня техники, например из книги Дерягин Б.В., Чураев Н.В., Муллер В.М. «Поверхностные силы», Москва, "Наука", 1985. Согласно некоторым вариантам реализации величина токоотводящего электрического потенциала находится в диапазоне от 10 В до 200 В, более предпочтительно от 60 В до 150 В, еще более предпочтительно от 61 В до 150 В. Значения токоотводящего электрического потенциала в диапазоне от 61 В до 150 В приводят к разряжению двойного электрического слоя, являющегося основой электростатической составляющей сил адгезии в накипи и, как следствие, разрушению накипи. Значения токоотводящего потенциала ниже 61 В являются недостаточными для разрушения накипи, а при значениях токоотводящего потенциала выше 150 В вероятно начало нежелательного электроэрозионного разрушения металла нагревательных трубок.

    Металлическая поверхность, к которой может быть применен способ согласно настоящему изобретению, может быть частью следующих теплотехнических устройств: нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе текущей эксплуатации. Данный список является иллюстративным и не ограничивает список устройств, к которым может быть применен способ согласно настоящему изобретению.

    В некоторых вариантах реализации железосодержащий сплав, из которого выполнена металлическая поверхность, к которой может быть применен способ согласно к настоящему изобретению, может представляет собой сталь или другой железосодержащий материал, такой как чугун, ковар, фехраль, трансформаторную сталь, альсифер, магнико, альнико, хромистую сталь, инвар и др. Данный список является иллюстративным и не ограничивает список железосодержащих сплавов, к которым может быть применен способ согласно настоящему изобретению. Специалист в данной области техники на основании сведений, известных из уровня техники, сможет такие железосодержащие сплавы, которые могут быть использованы согласно настоящему изобретению.

    Водная среда, из которой способна образовываться накипь, согласно некоторым вариантам реализации настоящего изобретения, представляет собой водопроводную воду. Водная среда также может представлять собой воду, содержащую растворенные соединения металлов. Растворенные соединения металлов могут представлять собой соединения железа и/или щелочно-земельных металлов. Водная среда также может представлять собой водную суспензию коллоидных частиц соединений железа и/или щелочно-земельных металлов.

    Способ согласно настоящему изобретению удаляет ранее образовавшиеся отложения и служит безреагентным средством очистки внутренних поверхностей в ходе эксплуатации теплотехнического устройства, обеспечивая в дальнейшем безнакипный режим его работы. При этом размеры зоны, в пределах которой достигается предотвращение образования накипи и коррозии, существенно превышает размеры зоны эффективного разрушения накипи.

    Способ согласно настоящему изобретению имеет следующие преимущества:

    Не требует применения реагентов, т.е. экологически безопасен;

    Прост в осуществлении, не требует специальных устройств;

    Позволяет повысить коэффициент теплопередачи и повысить эффективность работы котлов, что существенно сказывается на экономических показателях его работы;

    Может использоваться как дополнение к применяемым методам докотловой обработки воды, так и отдельно;

    Позволяет отказаться от процессов умягчения и деаэрации воды, что во многом упрощает технологическую схему котельных и дает возможность значительно снизить затраты при строительстве и эксплуатации.

    Возможными объектами способа могут быть водогрейные котлы, котлы-утилизаторы, закрытые системы теплоснабжения, установки по термическому опреснению морской воды, паропреобразовательные установки и пр.

    Отсутствие коррозионных разрушений, накипеобразования на внутренних поверхностях открывает возможность для разработки принципиально новых конструктивных и компоновочных решений паровых котлов малой и средней мощности. Это позволит, за счет интенсификации тепловых процессов, добиться существенного уменьшения массы и габаритов паровых котлов. Обеспечить заданный температурный уровень поверхностей нагрева и, следовательно, уменьшить расход топлива, объем дымовых газов и сократить их выбросы в атмосферу.

    ПРИМЕР РЕАЛИЗАЦИИ

    Способ, заявленный в настоящем изобретении, был испытан на котельных заводах «Адмиралтейские верфи» и «Красный химик». Было показано, что способ согласно настоящему изобретению эффективно очищает внутренние поверхности котлоагрегатов от отложений. В ходе этих работ была получена экономия условного топлива 3-10%, при этом разброс значений экономии связан с различной степенью загрязненности внутренних поверхностей котлоагрегатов. Целью работы являлась оценка эффективности заявленного способа для обеспечения безреагентного, безнакипного режима работы паровых котлоагрегатов средней мощности в условиях качественной водоподготовки, соблюдения водно-химического режима и высокого профессионального уровня эксплуатации оборудования.

    Испытание способа, заявленного в настоящем изобретении, проводилось на паровом котлоагрегате №3 ДКВр 20/13 4-ой Красносельской котельной Юго-Западного филиала ГУП «ТЭК СПб». Эксплуатация котлоагрегата проводилась в строгом соответствии с требованиями нормативных документов. На котле установлены все необходимые средства контроля параметров его работы (давления и расхода вырабатываемого пара, температуры и расхода питательной воды, давления дутьевого воздуха и топлива на горелках, разряжения в основных сечениях газового тракта котлоагрегата). Паропроизводительность котла поддерживалась на уровне 18 т/час, давление пара в барабане котла - 8,1…8,3 кг/см 2 . Экономайзер работал в теплофикационном режиме. В качестве исходной воды использовалась вода городского водопровода, которая соответствовала требованиям ГОСТ 2874-82 «Вода питьевая». Необходимо отметить, что количество соединений железа на вводе в указанную котельную, как правило, превышает нормативные требования (0,3 мг/л) и составляет 0,3-0,5 мг/л, что приводит к интенсивному зарастанию внутренних поверхностей железистыми соединениями.

    Оценка эффективности способа производилась по состоянию внутренних поверхностей котлоагрегата.

    Оценка влияния способа согласно настоящему изобретению на состояние внутренних поверхностей нагрева котлоагрегата.

    До начала испытаний был произведен внутренний осмотр котлоагрегата и зафиксировано исходное состояние внутренних поверхностей. Предварительный осмотр котла был произведен в начале отопительного сезона, через месяц после его химической очистки. В результате осмотра выявлено: на поверхности барабанов сплошные твердые отложения темно-коричневого цвета, обладающие парамагнитными свойствами и состоящие, предположительно, из окислов железа. Толщина отложений составляла до 0,4 мм визуально. В видимой части кипятильных труб, преимущественно на стороне обращенной к топке, обнаружены не сплошные твердые отложения (до пяти пятен на 100 мм длины трубы с размером от 2 до 15 мм и толщиной до 0,5 мм визуально).

    Устройство для создания токоотводящего потенциала, описанное в RU 2100492 С1, было присоединено в точке (1) к лючку (2) верхнего барабана с тыльной стороны котла (см. Фиг.1). Токоотводящий электрический потенциал был равен 100 В. Токоотводящий электрический потенциал поддерживался непрерывно в течение 1,5 месяцев. По окончании этого периода было произведено вскрытие котлоагрегата. В результате внутреннего осмотра котлоагрегата было установлено практически полное отсутствие отложений (не более 0,1 мм визуально) на поверхности (3) верхнего и нижнего барабанов в пределах 2-2,5 метров (зона (4)) от лючков барабанов (точки присоединения устройства для создания токоотводящего потенциала (1)). На удалении 2,5-3,0 м (зона (5)) от лючков отложения (6) сохранились в виде отдельных бугорков (пятен) толщиной до 0,3 мм (см. Фиг.1). Далее, по мере продвижения к фронту, (на удалении 3,0-3,5 м от лючков) начинаются сплошные отложения (7) до 0,4 мм визуально, т.е. на этом удалении от точки подключения устройства эффект способа очистки согласно настоящего изобретения практически не проявился. Токоотводящий электрический потенциал был равен 100 В. Токоотводящий электрический потенциал поддерживался непрерывно в течение 1,5 месяцев. По окончании этого периода было произведено вскрытие котлоагрегата. В результате внутреннего осмотра котлоагрегата было установлено практически полное отсутствие отложений (не более 0,1 мм визуально) на поверхности верхнего и нижнего барабанов в пределах 2-2,5 метров от лючков барабанов (точки присоединения устройства для создания токоотводящего потенциала). На удалении 2,5-3,0 м от лючков отложения сохранились в виде отдельных бугорков (пятен) толщиной до 0,3 мм (см. Фиг.1). Далее, по мере продвижения к фронту (на удалении 3,0-3,5 м от лючков), начинаются сплошные отложения до 0,4 мм визуально, т.е. на этом удалении от точки подключения устройства эффект способа очистки согласно настоящего изобретения практически не проявился.

    В видимой части кипятильных труб, в пределах 3,5-4,0 м от лючков барабанов, наблюдалось практически полное отсутствие отложений. Далее, по мере продвижения к фронту, обнаружены не сплошные твердые отложения (до пяти пятен на 100 п.мм с размером от 2 до 15 мм и толщиной до 0,5 мм визуально).

    В результате этого этапа испытаний был сделан вывод о том, что способ согласно настоящему изобретению без применения каких-либо реагентов позволяет эффективно разрушать ранее образовавшиеся отложения и обеспечивает безнакипный режим работы котлоагрегата.

    На следующем этапе испытаний устройство для создания токоотводящего потенциала было присоединено в точке «В» и испытания продолжались в течение еще 30-45 суток.

    Очередное вскрытие котлоагрегата было произведено после 3,5 месяцев непрерывной эксплуатации устройства.

    Осмотр котлоагрегата показал, что оставшиеся ранее отложения полностью разрушены и лишь в незначительном количестве сохранились на нижних участках кипятильных труб.

    Это позволило сделать следующие выводы:

    Размеры зоны, в пределах которой обеспечивается безнакипный режим работы котлоагрегата, существенно превышают размеры зоны эффективного разрушения отложений, что позволяет последующим переносом точки подключения токоотводящего потенциала произвести очистку всей внутренней поверхности котлоагрегата и далее поддерживать безнакипный режим его работы;

    Разрушение ранее образовавшихся отложений и предотвращение образования новых обеспечивается различными по характеру процессами.

    По результатам осмотра было принято решение продолжить испытания до конца отопительного периода с целью окончательной очистки барабанов и кипятильных труб и выяснения надежности обеспечения безнакипного режима работы котла. Очередное вскрытие котлоагрегата было произведено через 210 суток.

    Результаты внутреннего осмотра котла показали, что процесс очистки внутренних поверхностей котла в пределах верхнего и нижнего барабанов и кипятильных труб завершился практически полным удалением отложений. На всей поверхности металла образовалось тонкое плотное покрытие, имеющее черный цвет с синей побежалостью, толщина которого даже в увлажненном состоянии (практически сразу после вскрытия котла) не превышала 0,1 мм визуально.

    Одновременно подтвердилась надежность обеспечения безнакипного режима работы котлоагрегата при применении способа настоящего изобретения.

    Защитное действие магнетитовой пленки сохранялось до 2-х месяцев после отсоединения устройства, что вполне достаточно для обеспечения консервации котлоагрегата сухим способом при переводе его в резерв или на ремонт.

    Хотя настоящее изобретение было описано в отношении различных конкретных примеров и вариантов реализации изобретения, следует понимать, что это изобретение не ограничено ими и что оно может быть реализовано на практике в рамках объема приведенной ниже формулы изобретения

    1. Способ предотвращения образования накипи на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь, включающий приложение к указанной металлической поверхности токоотводящего электрического потенциала в диапазоне от 61 В до 150 В для нейтрализации электростатической составляющей силы адгезии между указанной металлической поверхностью и коллоидными частицами и ионами, образующими накипь.

    Изобретение относится к теплоэнергетике и может быть использовано для защиты от накипи и коррозии нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе эксплуатации. Способ предотвращения образования накипи на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь, включает приложение к указанной металлической поверхности токоотводящего электрического потенциала в диапазоне от 61 В до 150 В для нейтрализации электростатической составляющей силы адгезии между указанной металлической поверхностью и коллоидными частицами и ионами, образующими накипь. Технический результат - повышение эффективности и производительности работы водогрейных и паровых котлов, увеличение эффективности теплопередачи, обеспечение послойного разрушения и удаления образовавшейся накипи, а также предотвращение ее нового образования. 2 з.п. ф-лы, 1 пр., 1 ил.

    Коррозия водогрейных котлов , систем отопления, теплофикационных систем встречается гораздо чаще, нежели в пароконденсатных системах. В большинстве случаев такое положение объясняется тем, что при проектировании водогрейной системы этому уделяется меньше внимания, хотя факторы образования и последующего развития коррозии в котлах остаются точно такими, как и для паровых котлов и всего остального оборудования. Растворенный кислород, который не удаляется методом деаэрации, соли жесткости, углекислый газ, поступающие в водогрейные котлы с питательной водой, вызывают различные виды коррозии - щелочную (межкристаллическую), кислородную, хелатную, подшламовую. Нужно сказать, что хелатная коррозия в большинстве случаев образуется при наличии некоторых химических реагентов, так называемых, «комплексонов».

    Для того, чтобы предупредить возникновение коррозии в водогрейных котлах и ее последующее развитие, необходимо серьезно и ответственно отнестись к подготовке характеристик воды, предназначенной для подпитки. Нужно обеспечить связывание свободной двуокиси углерода, кислорода, вывести значение рН до приемлемого уровня, принять меры по защите от коррозии алюминиевых, бронзовых и медных элементов отопительного оборудования и котлов, трубопроводов и теплофикационного оборудования.

    В последнее время для качественной коррекционной тепловых сетей, водогрейных котлов и другого оборудования используются специальные химические реагенты.

    Вода в одно и то же время является универсальным растворителем и недорогим теплоносителем, ее выгодно использовать в системах отопления. Но недостаточная ее подготовка может привести к неприятным последствиям, одно из которых - коррозия водогрейных котлов . Вероятные риски, в первую очередь связаны с наличием в ней большого количества нежелательных примесей. Предотвратить образование и развитие коррозии можно, но только если четко понимать причины ее появления, а также быть знакомым с современными технологиями .

    Для водогрейных котлов, впрочем, как и для любых отопительных систем, использующих в качестве теплоносителя воду, характерны три вида проблем, обусловленных наличием следующих примесей:

    • механических нерастворимых;
    • осадкообразующих растворенных;
    • коррозионноактивных.

    Каждый из видов перечисленных примесей может стать причиной образования коррозии и выхода из строя водогрейного котла или иного оборудования. Кроме того, они способствуют снижению эффективности и производительности котла.

    И если в течение длительного времени использовать в отопительных системах не прошедшую специальную подготовку воду, то это может привести к серьезным последствиям - поломке циркуляционных насосов, снижению диаметра водопровода и последующее повреждение, выход из строя регулирующей и запорной арматуры. Самые простые механические примеси - глина, песок, обычная грязь - присутствуют практически везде, как в водопроводной воде, так и в артезианских источниках. Также в теплоносителях в больших количествах имеются продукты коррозии теплопередающих поверхностей, трубопроводов и остальных металлических элементов системы, которые постоянно соприкасаются с водой. Не стоит и говорить, что их наличие со временем провоцирует очень серьезные неполадки в функционировании водогрейных котлов и всего теплоэнергетического оборудования, которые в основном связаны с коррозией котлов, образованием известковых отложений, унесением солей и вспениванием котловой воды.

    Наиболее частая причина, в связи с которой возникает коррозия водогрейных котлов , это карбонатные отложения, возникающие при использовании воды повышенной жесткости, удаление которых возможно посредствам . Следует отметить, что в результате присутствия солей жесткости накипь образуется даже в низкотемпературном отопительном оборудовании. Но это далеко не единственная причина коррозии. Например, после нагрева воды до температуры более 130 градусов, растворимость сульфата кальция существенно снижается, в результате чего образуется слой плотной накипи. При этом неизбежно развитие коррозии металлических поверхностей водогрейных котлов.