Теплопроводность глины таблица. Теплопроводность основных строительных материалов. Показатели теплоизоляционных материалов

Люди тоже бывают разной теплопроводности, одни как пух греют, а другие как железо - тепло забирают.

Юрий Сережкин

Слово «тоже» в приведенном высказывании показывает, что к людям понятие «теплопроводности» применяется лишь условно. Хотя…

Знаете ли вы: шуба не греет, она лишь сохраняет тепло, которое вырабатывает организм человека.

Это значит, что человеческое тело обладает способностью проводить тепло и в буквальном, а не только в фигуральном смысле. Это все лирика, на самом же деле мы займёмся сравнением утеплителей по теплопроводности.

Вам виднее, ведь вы сами набрали в поисковике «теплопроводность утеплителей». Что именно вы хотели узнать? А если без шуток, то знать об этом понятии важно, потому что разные материалы очень по-разному ведут себя при использовании. Важным, хотя и не ключевым моментом при выборе является именно способность материала проводить тепловую энергию. Если неправильно выбрать теплоизоляционный материал попросту не будет выполнять свою функцию, а именно сохранять тепло в помещении.

Шаг 2: Теория понятие

Из школьного курса физики, скорее всего, помните, что существует три вида теплопередачи:

  • Конвекция;
  • Излучение;
  • Теплопроводность.

А значит теплопроводность - это вид теплопередачи или перемещения тепловой энергии. Это связано с внутренней структурой тел. Одна молекула передает энергию другой. А теперь хотите небольшой тест?

Какой вид веществ пропускает (передает) больше всего энергии?

  • Твердые тела?
  • Жидкости?
  • Газы?

Правильно, больше всего передает энергию кристаллическая решетка твердых тел. Их молекулы находятся ближе друг к другу и поэтому могут взаимодействовать эффективнее. Самой низкой теплопроводностью обладают газы. Их молекулы находятся на наибольшем удалении друг от друга.

Шаг 3: Что может быть утеплителем

Продолжаем наш разговор о теплопроводности утеплителей. Все тела, которые находятся рядом, стремятся уровнять температуру между собой. Дом или квартира, как объект, стремится уровнять температуру с улицей. Способны ли все строительные материалы быть утеплителями? Нет. Например, бетон пропускает тепловой поток из вашего дома на улицу слишком быстро, поэтому нагревательное оборудование не будет успевать поддерживать нужный температурный режим в помещении. Коэффициент теплопроводности для утеплителя рассчитывается по формуле:

Где W это наш тепловой поток, а м2 - площадь утеплителя при разнице температур в один Кельвин (Он равен одному градусу Цельсия). У нашего бетона данный коэффициент составляет 1,5. Это значит, что условно, один квадратный метр бетона при разнице температур в один градус Цельсия способен пропустить 1,5 вата тепловой энергии в секунду. Но, существуют материалы с коэффициентом в 0,023. Ясно, что такие материалы куда лучше подходят на роль утеплителей. Вы спросите, не играет ли значение толщина? Играет. Но, здесь все равно нельзя забыть про коэффициент теплопередачи. Чтобы добиться одинаковых результатов понадобится бетонная стена толщиной 3,2 м или лист пенопласта толщиной 0,1 м. Ясно, что хотя бетон и может формально быть утеплителем, экономически это нецелесообразно. Поэтому:

Утеплителем можно назвать материал, проводит через себя наименьшее количество тепловой энергии, не давая ей уйти из помещения и при этом стоить как можно дешевле.

Лучший теплоизолятор - это воздух. Поэтому задача любого утеплителя создание фиксированной воздушной прослойки без конвекции (перемещения) воздуха внутри нее. Именно поэтому, например, пенопласт на 98% состоит из воздуха. Самыми распространёнными утепляющими материалам считаются:

  • Пенопласт;
  • Экструдированный пенополистирол;
  • Минвата;
  • Пенофол;
  • Пеноизол;
  • Пеностекло;
  • Пенополиуретан (ППУ);
  • Эковата (целлюлоза);

Теплоизоляционные свойства всех перечисленных выше материалов лежат близко к данным пределам. Также стоит учесть: чем выше плотность материала, тем больше он проводит через себя энергии. Помните из теории? Чем ближе молекулы, тем эффективнее проводится тепло.

Шаг 4: Сравниваем. Таблица теплопроводности утеплителей

В таблице приводится сравнение утеплителей по теплопроводности заявленной производителями и соответствующие ГОСТам:

Сравнительная таблица теплопроводности строительных материалов, которые не принято считать утеплителями:

Показатель теплопередачи лишь указывает на скорость передачи тепла от одной молекуле к другой. Для реальной жизни этот показатель не так важен. А вот без теплового расчета стены не обойтись. Сопротивление теплопередаче - величина обратная теплопроводности. Речь идет о способности материала (утеплителя) задерживать тепловой поток. Чтобы рассчитать сопротивление теплопередаче нужно разделить толщину на коэффициент теплопроводности. На примере ниже показан расчет теплового сопротивления стены из бруса толщиной 180 мм.

Как видно, теплосопротивление такой стены составит 1,5. Достаточно? Это зависит от региона. В примере показан расчет для Красноярска. Для этого региона нужный коэффициент сопротивления ограждающих конструкций установлен на уровне 3,62. Ответ ясен. Даже для Киева, который намного южнее данный показатель равняется 2,04.

Тепловое сопротивление - величина обратная теплопроводности.

А значит, способности деревянного дома сопротивляться потере тепла недостаточно. Необходимо утепление, а уже, каким материалом - рассчитывайте по формуле.

Шаг 5: Правила монтажа

Стоит сказать, что все указанные выше показатели приведены для СУХИХ материалов. Если материл, намокнет, он потеряет свои свойства как минимум наполовину, а то и вовсе превратится в «тряпку». Поэтому нужно защищать теплоизоляцию. Пенопластом чаще всего утепляют под мокрый фасад, в котором утеплитель защищен слоем штукатурки. На минвату накладывается гидроизоляционная мембрана, чтобы не допустить попадание влаги.

Еще один момент, который заслуживает внимания - ветрозащита. Утеплители имеют разную пористость. Например, сравним плиты пенополистирола и минеральную вату. Если первый на вид выглядит цельным, на втором явно видны поры или волокна. Поэтому, если вы монтируете волокнистую теплоизоляцию, например, минвату или эковату на продуваемом ветром ограждении обязательно позаботьтесь о ветрозащите. В противном случае от хороших термических показателей утеплителя не будет пользы.

Выводы

Итак, мы обсудили, что теплопроводность утеплителей - это их способность передавать тепловую энергию. Теплоизолятор должен не выпустить тепло сгенерированное отопительной системой дома. Первостепенной задачей любого материала является удержать внутри себя воздух. Именно газ имеет наименьшую теплопроводность. Нужно также рассчитать теплосопротивление стены, чтобы узнать правильный коэффициент теплоизоляции здания. Если у вас остались вопросы по этой теме, оставляйте их, пожалуйста, в комментариях.

Три интересных факта о теплоизоляции

  • Снег служит теплоизолятором для медведя в берлоге.
  • Одежда - тоже теплоизолятор. Нам не очень комфортно, когда наше тело пытается уровнять температуру с температурой окружающей среды, которая может быть и -30 градусов, вместо привычных нам 36,6.
  • Одеяло - теплоизолятор. Оно не дает уйти теплу тела человека.

Бонус

В качестве бонуса для любознательных, дочитавших до конца интересный эксперимент с теплопроводностью:

Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.

Читайте в статье:

Что такое теплопроводность

Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.

То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:

  • бетон –1,51 Вт/м×К;
  • кирпич – 0,56;
  • древесина – 0,09-0,1;
  • песок – 0,35;
  • керамзит – 0,1;
  • сталь – 58.

Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.


Что такое коэффициент теплопроводности

Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.

В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.

Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.


Что влияет на теплопроводность строительных материалов

Есть несколько параметров, которые сильно влияют на тепловую проводимость.

  1. Структура самого материала.
  2. Его плотность и влажность.

Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.


Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.


Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.

Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.


Мнение эксперта

Инженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО "АСП Северо-Запад"

Спросить у специалиста

“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”


Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.


Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

Теплопроводность кирпича: таблица по разновидностям

Фото Вид кирпича Теплопроводность, Вт/м*К
Керамический полнотелый 0,5-0,8
Керамический щелевой 0,34-0,43
Поризованный 0,22
Силикатный полнотелый 0,7-0,8
Силикатный щелевой 0,4
Клинкерный 0,8-0,9

Теплопроводность дерева: таблица по породам

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.


Теплопроводность металлов: таблица

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
  • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.

Таблица теплопроводности других материалов

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материал Плотность, кг/м³ Теплопроводность, Вт/м*К
Минеральная вата (базальтовая) 50 0,048
100 0,056
200 0,07
Стекловата 155 0,041
200 0,044
Пенополистирол 40 0,038
100 0,041
150 0,05
Пенополистирол экструдированный 33 0,031
Пенополиуретан 32 0,023
40 0,029
60 0,035
80 0,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материал Плотность, кг/м³ Теплопроводность, Вт/м*К
Бетон 2400 1,51
Железобетон 2500 1,69
Керамзитобетон 500 0,14
Керамзитобетон 1800 0,66
Пенобетон 300 0,08
Пеностекло 400 0,11

Коэффициент теплопроводности воздушной прослойки

Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.


Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

  1. Конвекция теплого воздуха внутри прослойки.
  2. Тепловое излучение от материала с плюсовой температурой.

Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.


В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.

Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.


Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.

Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.

Понятие теплопроводности

Теплопроводность - процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.

Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Понятие теплопроводности на практике

Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.

Конструкционные материалы и их показатели

Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:


  • Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м 3 .
  • Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м 3 и 0,2-0,23Вт/м*К соответственно.

Еще один популярный строительный материал - кирпич. В зависимости от состава он обладает следующими показателями:

  • саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
  • керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
  • силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.

Материалы из бетона с добавлением пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

  • Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
  • Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м 3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.

Показатели теплоизоляционных материалов

Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:

  • пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
  • стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
  • с показателем 0,035-0,042Вт/м*К.

Таблица показателей

Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:

Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.

Правильно подобранный снизит по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 - 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 - 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 - 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 - 400 кг/м3 0,085-0,1
Пеноблок 100 - 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 - 220 кг/м3 0,057-0,063
Пеноблок 221 - 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Название материала, плотность Коэффициент теплопроводности
в сухом состоянии при нормальной влажности при повышенной влажности
ЦПР (цементно-песчаный раствор) 0,58 0,76 0,93
Известково-песчаный раствор 0,47 0,7 0,81
Гипсовая штукатурка 0,25
Пенобетон, газобетон на цементе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементе, 800 кг/м3 0,21 0,33 0,37
Пенобетон, газобетон на цементе, 1000 кг/м3 0,29 0,38 0,43
Пенобетон, газобетон на извести, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на извести, 800 кг/м3 0,23 0,39 0,45
Пенобетон, газобетон на извести, 1000 кг/м3 0,31 0,48 0,55
Оконное стекло 0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м3 1,51
Легкий бетон с природной пемзой, 500-1200 кг/м3 0,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м3 0,35-0,58
Бетон на котельном шлаке, 1400 кг/м3 0,56
Бетон на каменном щебне, 2200-2500 кг/м3 0,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м3 0,3-0,7
Керамическийй блок поризованный 0,2
Вермикулитобетон, 300-800 кг/м3 0,08-0,21
Керамзитобетон, 500 кг/м3 0,14
Керамзитобетон, 600 кг/м3 0,16
Керамзитобетон, 800 кг/м3 0,21
Керамзитобетон, 1000 кг/м3 0,27
Керамзитобетон, 1200 кг/м3 0,36
Керамзитобетон, 1400 кг/м3 0,47
Керамзитобетон, 1600 кг/м3 0,58
Керамзитобетон, 1800 кг/м3 0,66
ладка из керамического полнотелого кирпича на ЦПР 0,56 0,7 0,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) 0,35 0,47 0,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) 0,41 0,52 0,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) 0,47 0,58 0,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) 0,7 0,76 0,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот 0,64 0,7 0,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот 0,52 0,64 0,76
Известняк 1400 кг/м3 0,49 0,56 0,58
Известняк 1+600 кг/м3 0,58 0,73 0,81
Известняк 1800 кг/м3 0,7 0,93 1,05
Известняк 2000 кг/м3 0,93 1,16 1,28
Песок строительный, 1600 кг/м3 0,35
Гранит 3,49
Мрамор 2,91
Керамзит, гравий, 250 кг/м3 0,1 0,11 0,12
Керамзит, гравий, 300 кг/м3 0,108 0,12 0,13
Керамзит, гравий, 350 кг/м3 0,115-0,12 0,125 0,14
Керамзит, гравий, 400 кг/м3 0,12 0,13 0,145
Керамзит, гравий, 450 кг/м3 0,13 0,14 0,155
Керамзит, гравий, 500 кг/м3 0,14 0,15 0,165
Керамзит, гравий, 600 кг/м3 0,14 0,17 0,19
Керамзит, гравий, 800 кг/м3 0,18
Гипсовые плиты, 1100 кг/м3 0,35 0,50 0,56
Гипсовые плиты, 1350 кг/м3 0,23 0,35 0,41
Глина, 1600-2900 кг/м3 0,7-0,9
Глина огнеупорная, 1800 кг/м3 1,4
Керамзит, 200-800 кг/м3 0,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 0,23-0,41
Керамзитобетон, 500-1800 кг/м3 0,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 0,22-0,28
Кирпич клинкерный, 1800 - 2000 кг/м3 0,8-0,16
Кирпич облицовочный керамический, 1800 кг/м3 0,93
Бутовая кладка средней плотности, 2000 кг/м3 1,35
Листы гипсокартона, 800 кг/м3 0,15 0,19 0,21
Листы гипсокартона, 1050 кг/м3 0,15 0,34 0,36
Фанера клеенная 0,12 0,15 0,18
ДВП, ДСП, 200 кг/м3 0,06 0,07 0,08
ДВП, ДСП, 400 кг/м3 0,08 0,11 0,13
ДВП, ДСП, 600 кг/м3 0,11 0,13 0,16
ДВП, ДСП, 800 кг/м3 0,13 0,19 0,23
ДВП, ДСП, 1000 кг/м3 0,15 0,23 0,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 0,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 0,38
Линолеум ПВХ на тканевой основе, 1400 кг/м3 0,2 0,29 0,29
Линолеум ПВХ на тканевой основе, 1600 кг/м3 0,29 0,35 0,35
Линолеум ПВХ на тканевой основе, 1800 кг/м3 0,35
Листы асбоцементные плоские, 1600-1800 кг/м3 0,23-0,35
Ковровое покрытие, 630 кг/м3 0,2
Поликарбонат (листы), 1200 кг/м3 0,16
Полистиролбетон, 200-500 кг/м3 0,075-0,085
Ракушечник, 1000-1800 кг/м3 0,27-0,63
Стеклопластик, 1800 кг/м3 0,23
Черепица бетонная, 2100 кг/м3 1,1
Черепица керамическая, 1900 кг/м3 0,85
Черепица ПВХ, 2000 кг/м3 0,85
Известковая штукатурка, 1600 кг/м3 0,7
Штукатурка цементно-песчаная, 1800 кг/м3 1,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

Наименование Коэффициент теплопроводности
В сухом состоянии При нормальной влажности При повышенной влажности
Сосна, ель поперек волокон 0,09 0,14 0,18
Сосна, ель вдоль волокон 0,18 0,29 0,35
Дуб вдоль волокон 0,23 0,35 0,41
Дуб поперек волокон 0,10 0,18 0,23
Пробковое дерево 0,035
Береза 0,15
Кедр 0,095
Каучук натуральный 0,18
Клен 0,19
Липа (15% влажности) 0,15
Лиственница 0,13
Опилки 0,07-0,093
Пакля 0,05
Паркет дубовый 0,42
Паркет штучный 0,23
Паркет щитовой 0,17
Пихта 0,1-0,26
Тополь 0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Название Коэффициент теплопроводности Название Коэффициент теплопроводности
Бронза 22-105 Алюминий 202-236
Медь 282-390 Латунь 97-111
Серебро 429 Железо 92
Олово 67 Сталь 47
Золото 318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.


Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.