Двуполостный гиперболоид вращения– это поверхность вращения гиперболы. Гиперболоиды

Однополостный гиперболоид. Поверхность, определяемая уравнением

называется однополостным гиперболоидом. Эта поверхность имеет три плоскости симметрии - координатные плоскости, так как текущие координаты у и z входят в уравнение (55) в четных степенях.

Пересекая однополостный гиперболоид плоскостью получим лежащую в плоскости гиперболу ABCD (рис. 97)

Аналогично, в сечении однополостного гиперболоида плоскостью получится гипербола EFGH

лежащая в плоскости

При пересечении однополостного гиперболоида плоскостью получится эллипс BFCG, уравнения которого имеют вид:

Полуоси этого эллипса возрастают с возрастанием абсолютной величины h.

При получится эллипс, лежащий в плоскости и имеющий наименьшие полуоси а и b. При получим однополостный гиперболоид вращения

При пересечении его плоскостями будут получаться окружности

В пп. 2 и 3 рассматривались цилиндрические и конические поверхности, каждая из которых составлена из прямых. Оказывается, однополостный гиперболоид можно также рассматривать как поверхность, составленную из прямых линий. Рассмотрим прямую, определяемую уравнениями

в которых а, b и с - полуоси однополостного гиперболоида, a k - произвольно выбранное число

Перемножая почленно эти уравнения, получим уравнение

т. е. уравнение однополостного гиперболоида.

Таким образом, уравнение однополостного гиперболоида является следствием системы уравнений (59). Поэтому координаты любой точки , удовлетворяющие системе уравнений (59), удовлетворяют также и уравнению (55) однополостного гиперболоида. Иными словами, все точки прямой (59) принадлежат гиперболоиду (55). Меняя значения k, мы получим целое семейство прямых, лежащих на поверхности (55). Аналогично можно показать, что однополостному гиперболоиду принадлежат все прямые семейства

где - произвольный параметр.

Можно также показать, что через каждую точку однополостного гиперболоида проходит по одной прямой из каждого из указанных семейств. Таким образом, однополостный гиперболоид можно рассматривать как поверхность, составленную из прямых линий (рис. 98). Эти прямые называются прямолинейными образующими однополостного гиперболоида.

Возможность составления поверхности однополостного гиперболоида из прямых линий используется в строительной технике.

Так, например, по конструкции, предложенной инженером Шуховым В. Г. в Москве была сооружена радиомачта с помощью балок, расположенных по прямолинейным образующим однополостного гиперболоида.

Двуполостный гиперболоид. Поверхность, определяемая уравнением

называется двуполостным гиперболоидом.

Координатные плоскости являются плоскостями симметрии для двуполостного гиперболоида.

Пересекая эту поверхность координатными плоскостями получим соответственно гиперболы

- (греч., от hyperbole гипербола, и eidos сходство). Несомкнутая кривая поверхность 2 го порядка, происходящая от вращения гиперболы. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГИПЕРБОЛОИД греч., от hyperbole,… … Словарь иностранных слов русского языка

гиперболоид - а, м. hyperboloïde m. мат. Незамкнутая поверхность, образуемая вращением гиперболы вокруг одной из ее осей. БАС 2. Гиперболоид инженера Гарина. Лекс. Ян. 1803: гиперболоида; САН 1847: гиперболои/д: БАС 1954: гиперболо/идный … Исторический словарь галлицизмов русского языка

ГИПЕРБОЛОИД, гиперболоида, муж. (мат.). Поверхность, образуемая вращением гиперболы (в 1 знач.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Сущ., кол во синонимов: 2 коноид (4) поверхность (32) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Гиперболоид - Однополостный гиперболоид. ГИПЕРБОЛОИД (от гипербола и греческого eidos вид), поверхность, которая получается при вращении гиперболы вокруг одной из осей симметрии. В одном случае образуется двуполостный гиперболоид, в другом однополостный… … Иллюстрированный энциклопедический словарь

гиперболоид - hiperboloidas statusas T sritis fizika atitikmenys: angl. hyperboloid vok. Hyperboloid, m rus. гиперболоид, m pranc. hyperboloïde, m … Fizikos terminų žodynas

- (мат.) Под этим названием известны два вида поверхностей второго порядка. 1) Однополый Г. Эта поверхность, отнесенная к осям симметрии, имеет уравнение x2/a2 + y2/b2 z2/c2 = 1. Однополый Г. есть поверхность линейчатая и на ней лежат две системы… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

М. Незамкнутая поверхность, образуемая вращением гиперболы [гипербола II] вокруг одной из её осей (в геометрии). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

Гиперболоид, гиперболоиды, гиперболоида, гиперболоидов, гиперболоиду, гиперболоидам, гиперболоид, гиперболоиды, гиперболоидом, гиперболоидами, гиперболоиде, гиперболоидах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов

Незамкнутая центральная поверхность второго порядка. Существуют два вида Г.: однополостный Г. идвуполостный Г. В надлежащей системе координат (см. рис.) уравнение однополостного Г. имеет вид: а двуполостного вид: Числа а, b и с(и отрезки такой… … Математическая энциклопедия

Книги

  • , Алексей Толстой. В книгу вошли научно-фантастические романы А. Н. Толстого, созданные в 20-е годы прошлого века…
  • Гиперболоид инженера Гарина. Аэлита , Алексей Толстой. Роман "Гиперболоид инженера Гарина" и повесть "Аэлита" положили начало советской научно-фантастической литературе. Они отличаются тем, что темы фантастические даются в сочетании с…

ПРИЛОЖЕНИЕ 2

ОДНОПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ

(краткая информация)

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения. Образующая линия может быть плоской или пространственной кривой, а также прямой.

Каждая точка образующей линии при вращении вокруг оси описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения. Эти окружности называются параллелями. Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям. Линия пересечения поверхности вращения плоскостью, проходящей через ось, называется меридианом. Все меридианы поверхности вращения конгруэнтны.

Множество всех параллелей или меридианов представляет собой непрерывный каркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку. Геометрическая часть определителя поверхности вращения состоит из оси вращения и образующей линии.

Поверхности, образуемые вращением прямой линии:

1. - цилиндр вращенияобразуется вращением прямой, параллельной оси;

2. - конус вращения образуется вращением прямой, пересекающей ось;

3. - однополостный гиперболоид вращения образуется вращением прямой, скрещивающейся с осью;

Параллелями поверхности являются окружности.

Меридианом поверхности является гипербола.

Все перечисленные линейчатые поверхности вращения являются поверхностями второго порядка.

Поверхности, образуемые вращением кривых второго порядка вокруг их осей

1. Сфераобразуется вращением окружности вокруг ее диаметра.

2. Эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси.

3. Параболоид вращения образуется вращением параболы вокруг ее оси.

4. Однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси (эта поверхность образуется также вращением прямой: п. а-1).

Однополостным гиперболоидом называется поверхность, каноническое уравнение которой имеет вид:

где a, b, c – положительные числа.

Он имеет три плоскости симметрии, три оси симметрии и центр симметрии. Ими являются соответственно координатные плоскости, координатные оси и начало координат. Для построения гиперболоида найдем его сечения различными плоскостями. Найдем линию пересечения с плоскостью xOy. На этой плоскости z = 0, поэтому

Это уравнение на плоскости xOy задает эллипс с полуосями a и b (рис. 1). Найдем линию пересечения с плоскостью yOz. На этой плоскости x = 0, поэтому

Это уравнение гиперболы на плоскости yOz, где действительная полуось равна b, а мнимая полуось равна c. Построим эту гиперболу.

Сечение плоскостью xOz также является гиперболой с уравнением

Нарисуем и эту гиперболу, но чтобы не перегружать чертеж дополнительными линиями, не будем изображать ее асимптоты и уберем асимптоты в сечении плоскостью yOz.

Найдем линии пересечения поверхности с плоскостями z = ± h, h > 0.

Рис. 1. Сечение однополостного гиперболоида

Уравнения этих линий:

Первое уравнение преобразуем к виду

Это уравнение является уравнением эллипса, подобного эллипсу в плоскости xOy, с коэффициентом подобия и полуосями a 1 и b 1 . Нарисуем полученные сечения (рис. 2).

Рис. 2. Изображение однополостного гиперболоида с помощью сечений

Однополостный гиперболоид вращения может быть получен вращением прямой линии, скрещивающейся с мнимой осью, вокруг которой эта линия вращается. В этом случае получается пространственная фигура (рис. 3), поверхность которой складывается из последовательных положений прямой при вращении.

Рис. 3. Однополостный гиперболоид вращения, полученный вращением прямой линии, скрещивающейся с осью вращения

Меридианом такой поверхности служит гипербола. Пространство внутри этой фигуры вращения будет действительным, а снаружи – мнимым. Плоскость, перпендикулярная мнимой оси и рассекающая однополостной гиперболоид в его минимальном сечении, называется фокальной плоскостью.

Привычное для глаза изображение однополостного гиперболоида приведено на рис. 6.4.

Если в уравнении a=b, то сечения гиперболоида плоскостями, параллельными плоскости xOy, являются окружностями. В этом случае поверхность называется однополостным гиперболоидом вращения и может быть получена вращением гиперболы, лежащей в плоскости yOz, вокруг оси Oz (рис. 4).

Рис. 4. Однополостный гиперболоид вращения,

Определение. Однополостным гиперболоидом называется поверхность второго порядка, которая в некоторой прямоугольной системе координат определяется уравнением

Уравнение (3.32) называется каноническим уравнением однополостного гиперболоида.

Из (3.32) следует, что координатные плоскости являются осями симметрии, а начало координат  центром симметрии однополостного гиперболоида.

Установим вид поверхности, задаваемой уравнением (3.32). Рассмотрим линии пересечения однополостного гиперболоида плоскостями
. Уравнение проекции такой линии на плоскость
получается из уравнения (3.32), если положить в нем
. Имеем:

. (3.33)

Так как всегда
, то можно ввести обозначения

,
, (3.34)

с учетом которых соотношение (3.33) принимает вид

, (3.35)

т. е. проекция линии пересечения представляет собой эллипс с полуосями и. Наименьший из рассматриваемых эллипсов с полуосями
и
получается при сечении однополостного гиперболоида плоскостью
, т. е. координатной плоскостью
. Этот эллипс называетсягорловым .

С увеличением размеры эллипса неограниченно увеличиваются. Таким образом, однополостный гиперболоид представляет собой поверхность, состоящую из одной полости и подобную трубке, неограниченно расширяющейся в положительном и отрицательном направлениях по оси аппликат.

Рассмотрим сечения однополостного гиперболоида плоскостями
и
, параллельными координатным плоскостям
и
. Проекции этих сечений на соответствующие координатные плоскости являются линиями, задаваемыми уравнениями:

и
. (3.36)

Более подробно остановимся на сечении однополостного гиперболоида плоскостью, параллельной координатной плоскости
.

Если
, то в проекции на плоскость
получается пара вещественных пересекающихся прямых, определяемых уравнениями
и проходящих через начало координат.

Если
, то в проекции имеем гиперболу с фокусами на оси
(
) или
(
), причем полуоси этих гипербол увеличивается с удалением от начала координат.

Аналогичная картина получается и при сечении плоскостями, параллельными плоскости
. В сечении однополостного гиперболоида координатными плоскостями
и
получаем гиперболы

и
. (3.37)

Величины ,,называются полуосями однополостного гиперболоида.

3.12. Двуполостный гиперболоид

Определение. Двуполостным гиперболоидом называется поверхность второго порядка, которая в некоторой прямоугольной системе координат задается уравнением

. (3.38)

Уравнение (3.38) называется каноническим уравнением двуполостного гиперболоида.

Из этого уравнения следует, что координатные плоскости являются его осями симметрии, а начало координат  его центром симметрии.

Рассмотрим сечение двуполостного гиперболоида, определяемого уравнением (3.38), плоскостями
. Уравнение проекции линии пересечения на плоскость
получается из (3.38), если в нем положить
. Уравнение этой проекции имеет вид

. (3.39)

Если
, то (3.39) является уравнением мнимого эллипса и точек пересечения двуполостного гиперболоида с плоскостью
нет, т. е. в слое между плоскостями
и
не содержится точек рассматриваемой поверхности. Если
, то линия (3.39) вырождается в точки, т. е. плоскости
касаются двуполостного гиперболоида в точках
и
. Если
, то
и можно ввести обозначения

,
. (3.40)

Тогда уравнение (3.39) принимает вид

, (3.41)

т. е. проекция на плоскость
линии пересечения двуполостного гиперболоида и плоскости
представляет собой эллипс с полуосями, которые определяются равенствами (3.40), поэтому и сама линия пересечения является эллипсом. При удалении от начала координат вдоль оси
происходит увеличение полуосей эллипса.

В силу симметрии относительно плоскости
рассматриваемая поверхность содержит две полости.

При сечении плоскостями
, параллельными
, получаются кривые, которые при проектировании на эту плоскость определяются уравнениями

. (3.42)

Кривые, задаваемые уравнениями (3.42), являются гиперболами, фокусы которых расположены на оси
, причем с увеличением абсолютной величиныувеличивается вещественная полуось гиперболы.

Аналогичные результаты получаются при сечении двуполостного гиперболоида плоскостями, параллельными координатной плоскости
.

Рассмотренные сечения позволяют изобразить двуполостный гиперболоид как поверхность, состоящую из двух отдельных «полостей», каждая из которых имеет вид выпуклой чаши.

Величины ,,называются полуосями двуполостного гиперболоида.