Динамический диапазон ПЗС-матрицы. Использование градиентного фильтра. Факторы, ограничивающие динамический диапазон

Динамический диапазон - фактически, разница значений сенсора фотокамеры, получаемых деталей при ярком освещении и при отсутствии света. Если речь идёт непосредственно о процессе фотографии, как правило, значения динамического диапазона измеряются единицами экспозиции (EV ). С динамическим диапазоном приходится также иметь дело при обращении к разным форматам фотографических файлов. Здесь характеристика динамического диапазона определяется исходя из типа данных для определенного формата файла и преследуемых целей в процессе съемки. К примеру, для формата jpeg, значения динамического диапазона определяются на основе 8-битного гамма - корректированного стандарта представления цвета sRGB . В данном случае для формата jpeg значение динамического диапазона равняется 11,7EV . Если взять другой формат - Rediance HDR , здесь уже значение динамического диапазона приближается к 256EV .

Нередко под рассматриваемым термином понимают любую разницу отношений сигналов яркости в процессе фотографии. Допустим, разницу отношений яркостных сигналов наиболее светлых и наиболее темных тонов, разницу отношений яркостного сигнала белого и черного полей на фотобумаге, разницу отношений оптических плотностей фотопленки и т.д. В каждом определенном случае характеристику динамического диапазона, с точки зрения количества бит, необходимых для формирования информации, также следует рассматривать с разных точек зрения. К примеру, цифро - аналоговым преобразователем фотоаппарата на 10, 12, 14 бит, как правило, считываются значения по линейной шкале, а в случаях с форматами фотографических файлов используются значения гамма - корректированного стандарта. Нередко встречается достаточно много отдельных нюансов, когда динамический диапазон, измеряемый компьютерным форматом представления чисел (числа половинной точности), несколько шире диапазона, представленного целыми числами, несмотря на тот момент, что речь в обоих случаях идёт о 16-ти битах.

Современные фотографические камеры и фотопленки обладают недостаточной шириной динамического диапазона, чтобы можно было иметь возможность без искажений передавать любой сюжет. Недостаток особенно заметен при эксплуатации компактных цифровых фотоаппаратов и цветных обращаемых фотопленок. Многие современные цифровые камеры обеспечивают пользователю брекетинг , но зачастую неспособны точно передать яркий пейзаж с теневыми объектами в дневных условиях съемки. Однако проблемы недостатка широты динамического диапазона вполне решаемы. Для этого применяются: коррекция освещенности объектов, постановка искусственного освещения, установка специальных режимов работы фотоаппаратов и прочие методы. Также можно компенсировать недостаток динамического диапазона без учета изменений освещения, сцены, ракурса. В этом варианте увеличивают значения динамического диапазона сенсоров фотокамер либо прибегают к комбинации изображений, отснятых с разными значениями экспозиции. Глубина динамического диапазона зависит от размера матрицы , чем она больше, тем больше деталей на фотографии.

Между тем, каждый из двух отмеченных вариантов требует учитывать некоторые моменты:

Использование определенного формата файла для записи изображения с более широким яркостным диапазоном. К таким форматам сегодня относятся: OpenEXP , Radiance HDR , Photoshop , RAW , Microsoft HD Photo .

Применение метода тональной компрессии в процессе производства изображений и фотоснимков, для получения изображения с широким динамическим диапазоном.

Использование метода тонального отображения с целью нелинейного изменения яркости отдельных пикселей.

Последняя методика тональное отображение сегодня широко применяется для обработки изображений, имеющих малый диапазон значений яркости. С помощью метода тонального отображения появляется возможность повышения значения локального контраста для таких изображений. Между тем, многие профессиональные фотографы довольно скептически относятся к методике тонального отображения, считая данный способ расширения динамического диапазона «фантастическим ». Всё дело в том, что в результате обработки, получается, так сказать, фотография 4000 в образе близком к стилистике изображений для компьютерных игр.

by Cal Redback

Динамический диапазон является одним из многих параметров, на которые обращают внимание все, кто покупает или обсуждает фотокамеру. В различных обзорах часто используется этот термин наряду с параметрами шума и разрешения матрицы. Что же обозначает этот термин?

Не должно быть секретом, что динамический диапазон фотоаппарата - это способность камеры к распознаванию и одновременной передаче светлых и темных деталей снимаемой сцены.

Если говорить более детально, то динамический диапазон камеры - это охват тех тонов, которые она может распознать между черным и белым. Чем больше динамический диапазон, тем больше этих тонов могут быть записаны и тем больше деталей может быть извлечено из темных и светлых участков снимаемой сцены.

Динамический диапазон обычно измеряется в значениях . Хотя вроде бы и очевидно, что важным является возможность захватить наибольшее, насколько это возможно, число тонов, для большинства фотографов приоритетной остается цель - попытаться создать приятный образ. А это как раз не означает, что необходимо, чтобы была видна каждая деталь изображения. Например, если темные и светлые детали изображения будут разбавлены серыми полутонами, а не черными или белыми, то вся картинка будет иметь очень низкую контрастность и выглядеть довольно скучно и нудно. Ключевыми являются границы динамического диапазона фотокамеры и понимание как можно использовать его для создания фотографий с хорошим уровнем контрастности и без т.н. провалов в светах и тенях.

Что видит камера?

Каждый пиксель в изображении представляет один фотодиод на сенсоре камеры. Фотодиоды собирают фотоны света и превращают их в электрический заряд, который затем преобразуется в цифровые данные. Чем больше фотонов, которые собираются, тем больше электрический сигнал и тем ярче будет в изображении пиксель. Если фотодиод не собирает никаких фотонов света, то никакой электрический сигнал не будет создан и пиксель будет черным.

датчик 1 дюйм

датчик APS-C

Тем не менее, датчики бывают различных размеров и разрешений, а также при их производстве используются различные технологии, которые влияют на размер фотодиодов каждого датчика.

Если рассматривать фотодиоды как ячейки, то можно провести аналогию с наполнением. Пустой фотодиод будет воспроизводить черный пиксель, в то время как 50% от полного покажет серый цвет и заполненный на 100% будет белым.

Скажем, мобильные телефоны и компактные камеры имеют очень маленькие датчики изображения по сравнению с DSLR. Это означает, что они также имеют гораздо меньшие фотодиоды на датчике. Таким образом, даже при том, что и компактная камера, и DSLR может иметь датчик 16-миллионов пикселей, динамический диапазон будет отличаться.

Чем больше фотодиод, тем больше его способность хранить фотонов света по сравнению с меньшим размером фотодиода в меньшем датчике. Это означает, что чем больше физический размер, тем диод может лучше записывать данные в светлых и темных областях

Наиболее распространена аналогия, что каждый фотодиод похож на ведро, которое собирает свет. Представьте себе, что 16 миллионов ведер занимаются сбором света по сравнению с 16 млн. чашек. Ведра имеют больший объем, за счет которого способны собрать большее количество света. Чашки гораздо меньшей емкости, поэтому при наполнении могут передать фотодиоду гораздо меньший по мощности , соответственно пиксель может воспроизводиться с гораздо меньшим количеством световых фотонов, чем получается от более крупных фотодиодов.

Что это означает на практике? Камеры с меньшими размерами датчиков, такие как в смартфонах или потребительские компакты, имеют меньший динамический диапазон, чем даже самый компактный фотоаппарат из системных камер или зеркалок, которые используют большие датчики. Тем не менее, важно помнить, что влияет на ваши изображения общий уровень контраста в сцене, которую вы фотографируете.

В сцене с очень низкой контрастностью разница в тональном диапазоне, захваченном камерой мобильного телефона и DSLR, может быть мала или вообще не различима. Датчики обеих камер способны захватывать полный диапазон тонов сцены, если свет выставлен правильно. Зато при съемке высококонтрастных сцен будет очевидным, что, чем больше динамический диапазон, тем большее количество полутонов он способен передать. И так как более крупные фотодиоды имеют лучшую способность при записи более широкого диапазона тонов, следовательно, и имеют больший динамический диапазон.

Давайте посмотрим разницу на примере. На фотографиях ниже можно наблюдать отличия в передаче полутонов камерами с разным динамическим диапазоном при одинаковых условиях высокой контрастности освещения.

Что такое разрядность изображения?

Разрядность тесно связана с динамическим диапазоном и диктует камере какое количество тонов может быть воспроизведено в изображении. Хотя цифровые снимки полноцветные по умолчанию, и они не могут быть сняты не цветными, датчик камеры на самом деле не записывает непосредственно цвет, он просто записывает цифровое значение для количества света. Например, 1-битное изображение содержит самую простую "инструкцию" для каждого пикселя, поэтому в данном случае есть только два возможных конечных результата: черный или белый пиксель.

Битное изображение состоит уже из четырех различных уровней (2×2). Если оба бита равны - это белый пиксель, если оба выключены, то это черный. Есть также возможность иметь два варианта, что на изображении будет соответственное отражение еще двух тонов. Двухбитное изображение дает черно-белый цвет плюс два оттенка серого.

Если изображение 4-битное, соответственно существует 16 возможных комбинаций в получении различных результатов (2x2x2x2).

Когда дело доходит до обсуждения цифровых изображений и датчиков, чаще всего можно услышать о 12, 14 и 16-битных датчиках, каждый из которых способен записывать 4096, 16384 и 65536 различных тонов соответственно. Чем больше битовая глубина, тем большее количество значений яркости или тона может быть записано с помощью датчика.

Но и тут кроется подвох. Не все камеры способны воспроизводить файлы с такой глубиной цвета, которую может позволить создать датчик. Например, на некоторых камерах Nikon исходные файлы могут быть как 12 бит, так и 14 бит. Дополнительные данные в 14-битных изображениях означают, что в файлах, как правило, больше деталей в светлых и темных областях. Так как размер файла больше, то и времени на обработку и сохранение тратится больше. Сохранение необработанных изображений 12-битных файлов происходит быстрее, но тональный диапазон изображения из-за этого сжимается. Это означает, что некоторые очень темные серые пиксели будут отображаться как черные, а некоторые светлые тона могут выглядеть как .

Когда происходит съемка в формате JPEG, файлы сжимаются еще больше. Изображения JPEG являются 8-разрядными файлами, состоящими из 256 различных значений яркости, поэтому многие из мелких деталей, доступных для редактирования в исходных файлах, снятых в , полностью теряются в файле JPEG.

Таким образом, если у фотографа имеется возможность получить наиболее полную отдачу от всего возможного динамического диапазона фотокамеры, то лучше сохранять исходники в "сыром" виде - с максимально возможной битовой глубиной. Это означает, что снимки будут хранить наибольшее количество информации о светлых и темных областях, когда дело коснется редактирования.

Чем понимание динамического диапазона фотокамеры важно для фотографа? Исходя из имеющейся информации, можно сформулировать несколько прикладных правил, придерживаясь которых, повышается вероятность получения хороших и качественных изображений в трудных условиях для фотосъемки и избегать серьезных ошибок и недочетов.

  • Лучше снимок сделать более светлым, чем перетемнить его. Детали в светах "вытягиваются" проще, потому что они не такие шумные, как детали в тени. Безусловно, что правило действует при условиях более-менее правильно выставленной экспозиции.
  • При замере экспозиции по темным областям лучше жертвовать детализацией в тенях, более тщательно проработав света.
  • При большой разнице в яркости отдельных участках снимаемой композиции экспозицию следует замерять по темной части. При этом желательно выравнивать по возможности общую яркость поверхности изображения.
  • Оптимальное время для съемки считается утреннее или вечернее, когда свет распределяется равномерней, чем в полдень.
  • Портретная съемка пройдет лучше и легче, если использовать дополнительное освещение с помощью выносных вспышек для фотокамеры (например, купить современные накамерные вспышки http://photogora.ru/cameraflash/incameraflash).
  • При прочих равных следует пользоваться наименьшим из возможных значением ISO.

Приветствую вас, уважаемый читатель. С вами на связи, Тимур Мустаев. Наверняка вы задавались вопросом: «А что может моя камера?» Для ответа на него многие ограничиваются прочтением технических характеристик на коробке, корпусе или сайте производителя, но для вас этого явно недостаточно, не просто так же вы забрели на страницы моего блога.

Сейчас я постараюсь рассказать вам, что такое динамический диапазон фотоаппарата – характеристике, которую невозможно выразить в численном эквиваленте.

Что это такое?

Немного порывшись в терминах, можно выявить, что динамический диапазон – способность камеры распознавать и сохранять светлые и тёмные участки кадра одновременно.

Второе определение гласит, что это охват всех тонов между чёрным и белым, которые камера способна захватить. Оба варианта верны и говорят об одном и том же. Обобщая выше написанное, можно резюмировать: динамический диапазон определяет, какое количество деталей можно «вытащить» из участков разной тональности снимаемого кадра.

Очень часто этот параметр ассоциируют с . Почему? Всё просто: практически всегда именно экспонирование по определённому участку сцены определяет, что на конечном изображении будет ближе к чёрному или к белому.

Тут стоит отметить, что при экспонировании по светлому участку «спасти» снимок будет несколько проще, ведь пересвеченные участки восстановлению, можно сказать, не подлежат, о чём я рассказывал в статье о графических редакторах.

Но не всегда перед фотографом стоит задача получить максимально информативный кадр. Чаще наоборот, некоторые детали лучше было бы скрыть. К тому же, если вместо чёрных и белых деталей на снимке начнут появляться серые – это негативно скажется на контрастности и общем восприятии снимка.

Поэтому широкий динамический диапазон не всегда играет решающую роль в получении качественной фотографии.

Из этого можно сделать следующий вывод: решающим фактором является не максимальное значение динамического диапазона, а осознание того, как его можно использовать. Именно фактором получения максимально красивого сюжета оперируют многие топовые фотографы для выбора точки экспонирования, а идеальный кадр получается только после достойной обработки.

Как видит мир камера?

Цифровые камеры в качестве светочувствительного элемента используют матрицу. Так вот, за каждый пиксель на конечном изображении здесь отвечает специальный фотодиод, который превращает в электрический заряд количество фотонов, полученных из объектива. Чем их больше – тем выше заряд, а если их нет вовсе или превышен динамический диапазон сенсора, то пиксель будет чёрным или белым соответственно.

Помимо этого, матрицы в фотокамерах бывают разных размеров, могут производиться по разным технологиям. В купе все параметры влияют на размер фотодатчика, от которого зависит широта охвата светового диапазона. К примеру, если рассмотреть камеры в смартфонах, то размер их сенсора настолько мал, что не составляет даже пятой части от габаритов .

Как следствие, мы получаем более низкий динамический диапазон. Тем не менее, некоторые производители увеличивают размер пикселей в камерах своих девайсов, говорят, что смартфоны способны вытеснить фотокамеры с рынка. Да, они могут вытеснить любительские мыльницы, но до DSLR, то есть зеркальных, им далековато.

В качестве аналогии многие фотографы приводят сосуды разных размеров. Так, пиксели смартфонных камер часто принимают за стаканы, а в DSLR – за вёдра. К чему это всё? К тому, что, к примеру, 16 миллионов стаканов поместят в себя меньше воды, чем 16 миллионов вёдер. То же самое и с сенсорами, только вместо сосудов у нас фотодатчики, а воду заменяют фотоны.

Тем не менее, сравнение качества картинки, полученной на мобильный телефон и зеркальную камеру, может показать их сходство. К тому же, некоторые из первых с недавнего времени начали поддерживать съёмку в RAW. Но сходство будет таковым только при идеальных условиях освещения. Как только речь пойдёт о низко-контрастных сценах – девайсы с маленькими сенсорами останутся позади.

Разрядность изображения

Этот параметр также тесно связан с динамическим диапазоном. Связь эта базируется на том, что именно разрядность сообщает камере сколько тонов нужно воспроизвести в изображении. Это говорит о том, что цветные снимки с цифровой камеры, которые являются таковыми по умолчанию, могут быть засняты монохромно. Почему? Потому что матрица, как правило, записывает не цветовую палитру, а количество света в цифровом эквиваленте.

Зависимость здесь пропорциональная: если изображение 1-битное, то пиксели на нём могут быть либо чёрными, либо белыми. 2 бита добавляют к этим вариантам ещё 2 оттенка серого. И так в геометрической прогрессии. Когда дело доходит до работы с цифровыми сенсорами, чаще всего используются 16-битные, так как их охват тонов сильно выше датчиков, работающих с меньшим количеством бит.

Что это нам даёт? Камера сможет обрабатывать большее количество тонов, что позволит более точно передать световую картину. Но здесь есть небольшой нюанс. Некоторые аппараты не могут воспроизводить изображения с максимальной битностью, на которую рассчитаны их матрица и процессор. Такая тенденция наблюдается на некоторых продуктах компании Nikon. Здесь исходники могут быть 12- и 14-битными. Камеры Canon, кстати, таким не грешат, насколько мне известно.

Какие могут быть последствия у таких камер? Здесь всё зависит от снимаемой сцены. К примеру, если кадр требует высокого динамического диапазона, то некоторые пиксели, максимально близкие к чёрному и белому, но являющиеся оттенками серого, могут быть сохранены как чёрный или белый соответственно. В остальных случаях разницу заметить будет практически невозможно.

Общий вывод

Итак, какой можно сделать вывод из всего вышеописанного?

  • Во-первых, стараться выбирать камеру с большой матрицей, если это нужно.
  • Во-вторых, выбирать максимально удачные точки для экспонирования. Если это невозможно, то лучше сделать несколько снимков с разными точками замера экспозиции и выбрать наиболее удачный.
  • В-третьих, стараться хранить изображения с максимально допустимой битовой глубиной, в «сыром виде», то есть в формате RAW.

Если вы начинающий фотограф и вас интересует больше информации о цифровом зеркальном фотоаппарате, да еще и с наглядными видео примерами, тогда не упустите возможность изучить курсы «» или «Моя первая ЗЕРКАЛКА ». Именно их я рекомендую фотографу-новичку. На сегодняшний день они одни из лучших курсов для детального понимания своего фотоаппарата.

Моя первая ЗЕРКАЛКА — для сторонников фотоаппарата CANON.

Цифровая зеркалка для новичка 2.0 — для сторонников фотоаппарата NIKON.

В общем-то, это всё, что я хотел рассказать. Надеюсь, статьёй вы остались довольны и почерпнули из неё для себя что-то новое. Если это так, то советую подписаться на мой блог и рассказать о статье своим друзьям. Скоро мы опубликуем ещё несколько полезных и интересных статей. Всего доброго!

Всех вам благ, Тимур Мустаев.

Динамический диапазон в фотографии описывает соотношение между максимальной и минимальной измеримой интенсивностью света (белым и чёрным, соответственно). В природе не существует абсолютно белого или чёрного - только различные степени интенсивности источника света и отражательной способности предмета. В силу этого концепция динамического диапазона усложняется и зависит от того, описываете ли вы записывающий прибор (такой как камера или сканер), воспроизводящий (такой как отпечаток или дисплей компьютера) или собственно предмет.

Как и при управлении цветом, каждое устройство в приведенной выше цепи передачи изображения имеет свой собственный динамический диапазон. В отпечатках и дисплеях ничто не может стать ярче, чем белизна бумаги или максимальная интенсивность пикселя, соответственно. По сути, ещё один прибор, который не был упомянут выше, это наши глаза, у которых тоже есть свой собственный динамический диапазон. Передача информации из изображения между устройствами таким образом может повлиять на его воспроизведение. Следовательно, концепция динамического диапазона полезна для относительного сравнения исходной сцены, вашей камеры и изображения на вашем экране или на отпечатке.

Влияние света: освещённость и отражение

Сцены с высокими вариациями яркостей отражённого света, например, содержащие чёрные объекты вдобавок к сильным отражениям, могут в действительности иметь более широкий динамический диапазон, чем сцены с большой вариативностью падающего света. В любом из этих случаев фотографии могут запросто превысить динамический диапазон вашей камеры, особенно если не следить за экспозицией.

Точное измерение интенсивности света, или освещённости, следовательно, является критическим для оценки динамического диапазона. Здесь мы используем термин «освещённость», чтобы определить исключительно падающий свет. Как освещённость, так и яркость обычно измеряются в канделах на квадратный метр (кд/м 2). Приблизительные значения для часто встречающихся источников освещения приведены ниже.

Здесь мы видим, что возможны большие вариации в падающем свете, поскольку вышеприведенная диаграмма отградуирована в степенях десяти. Если сцена неравномерно освещена как прямым, так и рассеянным солнечным светом, одно это может невероятно расширить динамический диапазон сцены (как видно из примера с закатом в каньоне с частично освещённой скалой).

Цифровые камеры

Несмотря на то, что физический смысл динамического диапазона в реальном мире - это всего лишь соотношение между наиболее и наименее освещёнными участками (контраст), его определение становится более сложным при описании измерительных приборов, таких как цифровые камеры и сканеры. Вспомним из статьи о сенсорах цифровых камер , что свет сохраняется каждым пикселем в своего рода термосе. Размер каждого такого термоса, в дополнение к тому как оценивается его содержимое, и определяет динамический диапазон цифровой камеры.

Фотопиксели удерживают фотоны, как термосы сохраняют воду. Следовательно, если термос переполняется, вода выливается наружу. Переполненный фотопиксель называют насыщенным, и он неспособен распознать дальнейшее поступление фотонов - тем самым определяя уровень белого камеры. Для идеальной камеры её контраст в таком случае определялся бы числом фотонов, которое может быть накоплено каждым из фотопикселей, поделенным на минимальную измеримую интенсивность света (один фотон). Если в пикселе может сохраниться 1000 фотонов, контрастность будет 1000:1. Поскольку ячейка большего размера может накопить больше фотонов, у цифровых зеркальных камер динамический диапазон обычно больше, чем у компактных камер (в силу большего размера пикселей).

Примечание: в некоторых цифровых камерах существует дополнительная настройка низкого ISO, которая снижает шум, но также и сужает динамический диапазон. Это происходит потому, что такая настройка в действительности переэкспонирует изображения на одну ступень и впоследствии обрезает яркости - увеличивая таким способом светосигнал. Примером могут служить многие камеры Canon, которые имеют возможность снимать в ISO 50 (ниже обычного ISO 100).

В действительности потребительские камеры не могут подсчитать фотоны. Динамический диапазон ограничен наиболее тёмным тоном, для которого более невозможно различить текстуру - его называют уровнем чёрного. Уровень чёрного ограничен тем, насколько точно можно измерить сигнал в каждом фотопикселе и, следовательно, ограничен снизу уровнем шума . В результате динамический диапазон как правило увеличивается при снижении числа ISO, а также у камер с меньшей погрешностью измерения .

Примечание: даже если бы фотопиксель мог подсчитать отдельные фотоны, подсчёт тем не менее был бы ограничен фотонным шумом. Фотонный шум создаётся статистическими колебаниями и представляет теоретический минимум шума. Итоговый шум является суммой фотонного шума и погрешности считывания.

В целом, динамический диапазон цифровой камеры таким образом может быть описан как соотношение между максимальной (при насыщении пикселя) и минимальной (на уровне погрешности считывания) измеримой интенсивностью света. Наиболее распространённой единицей измерения динамического диапазона цифровых камер является f-ступень, которая описывает разницу в освещённости в степенях числа 2. Контраст 1024:1 в таком случае может быть также описан как динамический диапазон из 10 f-ступеней (поскольку 2 10 = 1024).В зависимости от применения, каждая f-ступень может быть также описана как «зона» или «eV».

Сканеры

Сканеры оцениваются по тому же соотношению насыщенности и шума, как и динамический диапазон цифровых камер, за исключением того, что они описываются в терминах плотности (D). Это удобно, поскольку концептуально аналогично тому, как пигменты создают цвет на отпечатке, как показано ниже.

Общий динамический диапазон в терминах плотности таким образом выглядит как разница между максимальной (D max) и минимальной (D min) плотностями пигмента. В отличие от степеней 2 для f-ступеней, плотность измеряется в степенях 10 (так же, как и шкала Рихтера для землетрясений). Таким образом, плотность 3.0 представляет контраст 1000:1 (поскольку 10 3.0 = 1000).

Исходный динамический
диапазон

Динамический
диапазон сканера

Вместо указания диапазона плотности производители сканеров обычно указывают только значение D max , поскольку D max - D min обычно приблизительно равно D max . Это потому, что в отличие от цифровых камер, сканер контролирует свой источник света, гарантируя минимальную засветку.

Для высокой плотности пигмента к сканерам применимы те же ограничения по шуму, что и для цифровых камер (поскольку оба они используют массив фотопикселей для измерения). Таким образом, измеримая D max тоже определяется шумом, присутствующим в процессе считывания светосигнала.

Сравнение

Динамический диапазон варьируется настолько широко, что его часто измеряют логарифмической шкалой, аналогично тому как крайне различные интенсивности землетрясений измеряются одной шкалой Рихтера. Здесь приведен максимальный измеримый (или воспроизводимый) динамический диапазон для различных устройств в любых предпочитаемых единицах (f-ступени, плотность и соотношение контраста). Наведите курсор на каждый из вариантов, чтобы их сравнить.

Выберите тип диапазона:
Печать Сканеры Цифровые камеры Мониторы

Обратите внимание на огромную разницу между воспроизводимым динамическим диапазоном печати и измеримым сканерами и цифровыми камерами. Сравнивая с реальным миром, это разница между примерно тремя f-ступенями в облачный день с практически ровным отражённым светом и 12 и более f-ступенями в солнечный день с высококонтрастным отражённым светом.

Использовать вышеуказанные цифры следует с осторожностью: в действительности динамический диапазон отпечатков и мониторов сильно зависит от условий освещения. Отпечатки при неверном освещении могут не показать свой полный динамический диапазон, тогда как мониторы требуют практически полной темноты, чтобы реализовать свой потенциал - особенно плазменные экраны. Наконец, все эти цифры являются всего лишь грубыми приближениями; реальные значения будут зависеть от наработки прибора или возраста отпечатка, поколения модели, ценового диапазона и т.д.

Учтите, что контрастность мониторов зачастую сильно завышена , поскольку для них не существует стандарта производителя. Контрастность свыше 500:1 зачастую является результатом очень тёмной чёрной точки, а не более яркой белой. В связи с этим нужно уделять внимание как контрастности, так и яркости. Высокая контрастность без сопутствующей высокой яркости может быть полностью сведена на нет даже рассеянным светом от свечи.

Человеческий глаз

Человеческий глаз может в действительности воспринимать более широкий динамический диапазон, чем это обычно возможно для камеры. Если учитывать ситуации, в которых наш зрачок расширяется и сужается, адаптируясь к изменению света , наши глаза способны видеть в диапазоне величиной почти 24 f-ступеней.

С другой стороны, для корректного сравнения с одним снимком (при постоянной диафрагме, выдержке и ISO) мы можем рассматривать только мгновенный динамический диапазон (при неизменной ширине зрачка). Для полной аналогии нужно смотреть в одну точку сцены, дать глазам адаптироваться и не смотреть при этом ни на что другое. В этом случае существует большая несогласованность, поскольку чувствительность и динамический диапазон наших глаз меняется в зависимости от яркости и контраста. Наиболее вероятным будет диапазон из 10-14 f-ступеней.

Проблема этих чисел в том, что наши глаза исключительно адаптивны. Для ситуаций исключительно неяркого звёздного света (когда наши глаза используют палочки для ночного видения) они достигают даже более широких мгновенных динамических диапазонов (см. «Цветовое восприятие человеческого глаза »).

Глубина цветности и измерение динамического диапазона

Даже если бы чья-то камера могла охватить большую часть динамического диапазона, точность, с которой измерения света преобразуются в цифры, может ограничить применимый динамический диапазон. Рабочая лошадка, которая занимается преобразованием непрерывных результатов измерений в дискретные числовые значения, называется аналогово-цифровым преобразователем (АЦП). Точность АЦП может быть описана в терминах разрядности, аналогично разрядности цифровых изображений , хотя следует помнить о том, что эти концепции неявляются взаимозаменяемыми. АЦП создаёт значения, которые хранятся в файле формата RAW .

Примечание: вышеприведенные значения отражают только точность АЦП и не должны
использоваться для интерпретации результатов для 8 и 16-битных файлов изображений.
Далее, для всех значений показан теоретический максимум, как если бы шум отсутствовал.
Наконец, эти цифры справедливы только для линейных АЦП, а разрядность
нелинейных АЦП необязательно коррелирует с динамическим диапазоном.

В качестве примера, 10 бит глубины цветности преобразуются в диапазон возможных яркостей 0-1023 (поскольку 2 10 = 1024 уровня). Предполагая, что каждое значение на выходе АЦП пропорционально актуальной яркости изображения (то есть, удвоение значения пикселя означает удвоение яркости), 10-битная разрядность может обеспечить контрастность не более 1024:1.

Большинство цифровых камер используют АЦП с разрядностью от 10 до 14 бит, так что их теоретически достижимый максимальный динамический диапазон составляет 10-14 ступеней. Однако такая высокая разрядность всего лишь помогает минимизировать постеризацию изображения , поскольку общий динамический диапазон обычно ограничен уровнем шума. Подобно тому, как большая разрядность изображения необязательно подразумевает большую глубину его цветности , наличие в цифровой камере высокоточного АЦП необязательно означает, что она в состоянии записать широкий динамический диапазон. На практике динамический диапазон цифровой камеры даже не приближается к теоретическому максимуму АЦП ; в основном 5-9 ступеней - это всё, чего можно ожидать от камеры.

Влияние типа изображения и кривая цветности

Могут ли файлы цифровых изображений в действительности записать полный динамический диапазон высококлассных приборов? В интернете наблюдается большое непонимание взаимосвязи разрядности изображения с записываемым динамическим диапазоном.

Для начала следует разобраться, говорим мы о записываемом или отображаемом динамическом диапазоне. Даже обыкновенный 8-битный файл формата JPEG может предположительно записать бесконечный динамический диапазон - предполагая, что во время преобразования из формата RAW была применена кривая цветности (см. статью о применении кривых и динамическом диапазоне), и АЦП имеет требуемую разрядность. Проблема кроется в использовании динамического диапазона; если слишком малое число бит распространить на слишком большой диапазон цвета, это может привести к постеризации изображения .

С другой стороны, отображаемый динамический диапазон зависит от коррекции гаммы или кривой цветности, подразумеваемой файлом изображения или используемой видеокартой и монитором. Используя гамму 2.2 (стандарт для персональных компьютеров), было бы теоретически возможно передать динамический диапазон из практически 18 f-ступеней (об этом расскажет глава о коррекции гаммы, когда будет написана). И даже в этом случае он мог бы пострадать от сильной постеризации. Единственным на сегодня стандартным решением для получения практически бесконечного динамического диапазона (без видимой постеризации) является использование файлов расширенного динамического диапазона (HDR) в Photoshop (или другой программе, например, с поддержкой формата OpenEXR).

Динамический диапазон -- это отношение максимального допустимого значения измеряемой величины (яркости по каждому из каналов) к минимальному значению (уровню шумов). В фотографии динамический диапазон принято измерять в единицах экспозиции (шаг, стоп, EV), т.е. логарифмом по основанию 2, реже - десятичным логарифмом (обозначается буквой D). 1EV = 0,3D. Изредка используют и линейное обозначение, например 1:1000, что равно 3D или почти 10EV.

Характеристика «динамический диапазон» также используется для форматов файлов , используемых для записи фотографий . В этом случае он назначается авторами конкретного формата файла, исходя из тех целей, для которых этот формат будет использоваться. Например, ДД

Термином «динамический диапазон» иногда неверно называют любое отношение яркостей в фотографии:

  • отношение яркостей самых светлых и тёмных объектов съемки
  • максимальное отношение яркостей белого и чёрного цветов на мониторе/фотобумаге (верный английский термин contrast ratio)
  • диапазон оптических плотностей плёнки
  • другие, ещё более экзотические варианты

Динамический диапазон современных цифровых фотоаппаратов на начало 2008 года составляет от 7-8 EV у компактных камер до 10-12 EV у цифровых зеркальных камер (см. тесты современных камер на http://dpreview.com). При этом необходимо помнить, что матрица передает объекты съёмки с разным качеством, детали в тенях искажаются шумами , в светах - передаются очень хорошо. Максимальный ДД зеркалок доступен только при съемке в RAW , при конвертации в JPEG камера обрезает детали, сокращая диапазон до 7,5-8,5EV (в зависимости от настроек контраста камеры).

Динамический диапазон файлов и матриц фотоаппаратов часто путают с количеством бит , используемых для записи информации, однако прямой связи между этими величинами нет. Поэтому, например, ДД Radiance HDR (32 бита на пиксель) больше, чем 16-битного RGB (фотоширота), показывающая тот диапазон яркостей, который пленка может передать без искажений, с равным контрастом (диапазон яркостей линейной части характеристической кривой плёнки). Полный ДД плёнки обычно несколько шире фотошироты и виден на графике характеристической кривой плёнки.

Фотоширота слайда составляет 5-6EV, профессионального негатива - около 9EV, любительского негатива - 10EV, киноплёнки - до 14EV.

Расширение динамического диапазона

Динамического диапазона современных камер и пленок недостаточно для того, чтобы передать любой сюжет окружающего мира. Особенно это заметно при съемке на слайд или компактную цифровую камеру, которые зачастую не могут передать даже яркий дневной пейзаж в средней полосе России , если там есть объекты в тени (а диапазон яркостей ночного сюжета с искусственным освещением и глубокими тенями может доходить до 20EV). Эта проблема решается двумя путями:

  • увеличение динамического диапазона камер (видеокамеры для систем наблюдения имеют заметно больший динамический диапазон, чем фотокамеры, однако это достигается путем ухудшения других характеристик камеры; каждый год выходят новые модели профессиональных камер с лучшими характеристиками, при этом их динамический диапазон медленно растет)
  • комбинирование изображений, снятых с разной экспозицией (технология HDR в фотографии), в результате которого возникает единое изображение, содержащее все детали из всех исходных изображений, как в крайних тенях, так и в максимальных светах.

Файл:HDRIexample.jpg

HDRi фотография и три снимка, из которых она собрана

Оба пути требуют решения двух проблем:

  • Выбор формата файла, в который можно записать изображение с расширенным диапазоном яркостей (обычные 8-битные sRGB файлы для этого не подходят). На сегодня самыми популярным форматами являются Radiance HDR, Open EXR, а так же Microsoft HD Photo , Adobe Photoshop PSD , RAW -файлы зеркальных цифровых камер с большим динамическим диапазоном.
  • Отображение фотографии с большим диапазоном яркостей на мониторах и фотобумаге , имеющих существенно меньший максимальный диапазон яркостей (contrast ratio). Данная проблема решается с помощью одного из двух методов:
    • тональная компрессия, при которой большой диапазон яркостей уменьшается в небольшой диапазон бумаги, монитора или 8-битного sRGB-файла путем уменьшения контраста всего изображения, единым образом для всех пикселей изображения;
    • тональное отображение (tone mapping, тонмаппинг), при котором производится нелинейное изменение яркостей пикселей, на разную величину для разных областей изображения, при этом сохраняется (или даже увеличивается) оригинальный контраст, однако тени могут выглядеть неестественно светлыми, и на фотографии могут появиться ореолы на границах областей с разным изменением яркости.

Тонмаппинг также может использоваться и для обработки изображений с небольшим диапазоном яркостей для повышения локального контраста.

Из-за способности тонмаппинга выдавать «фантастические» картинки в стиле компьютерных игр, и массового представления таких фотографий с вывеской «HDR» (даже полученных из одного изображения с небольшим диапазоном яркостей) у большинства профессиональных фотографов и опытных любителей выработалось стойкое отвращение к технологии расширения динамического диапазона из-за неверного мнения о том, что она нужна для получения таких картинок (приведенный выше пример показывает использование методов HDR для получения нормального реалистического изображения).

См. также

Ссылки

  • Определения основных понятий:
    • БСЭ, статья «фотографическая широта»
    • Горохов П. К. «Толковый словарь по радиоэлектронике. Основные термины» - М.: Рус. яз., 1993
  • Фотоширота пленок и ДД фотоаппаратов
    • http://www.kodak.com/global/en/professional/support/techPubs/e4035/e4035.jhtml?id=0.2.26.14.7.16.12.4&lc=en
  • Форматы файлов:

Wikimedia Foundation . 2010 .

Смотреть что такое "Динамический диапазон в фотографии" в других словарях:

    Динамический диапазон: Динамический диапазон (техника) характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового давления, представляющая логарифм… … Википедия

    Динамический диапазон характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового давления и т. д.), представляющая логарифм отношения максимального и… … Википедия

    У этого термина существуют и другие значения, см. Динамический диапазон. Динамический диапазон характеристика устройства или системы, предназначенной для преобразования, передачи или хранения некой величины (мощности, силы, напряжения, звукового… … Википедия

    Фотографическая широта характеристика светочувствительного материала (фотоплёнки, передающей телевизионной трубки, матрицы) в фотографии, телевидении и кино. Определяет способность светочувствительного материала правильно передавать яркость… … Википедия

    Контраст в наиболее общем смысле, любая значимая или заметная разница (например, «Россия страна контрастов…», «контраст впечатлений», «контраст вкуса пельменей и бульона вокруг них»), не обязательно измеряемая количественно. Контрастность степень … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное … Википедия

    У этого термина существуют и другие значения, см. HDR. High Dynamic Range Imaging, HDRI или просто HDR общее название технологий работы с изображениями и видео, диапазон яркости которых превышает возможности стандартных технологий. Чаще… … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

    В Википедии есть п … Википедия

    - (лат. redactus приведённый в порядок) изменение оригинала изображения классическими или цифровыми методами. Также может обозначаться термином ретуширование, ретушь (фр. retoucher подрисовывать, подправлять). Целью редактирования… … Википедия